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Abstract

The study of human history and human behavior has been greatly advanced

by integrating our species within the larger study of ecology and evolution. Yet

humans differ from other organisms on Earth in a number of ways; one of the most

important is our unique capacity for cumulative transmission of knowledge, behaviors

and technologies. This process enables us to move into environments well outside

the tropical forager niche for which we are mostly adapted, and realize lifestyles

unprecedented in the history of life.

Studying this process as a Darwinian system of inheritance is the next step in this

integration. Within the last three decades, this approach has been rigorously formu-

lated by a set of mathematical models exploring how human learning and decision-

making scale up to population-level dynamics. These models have motivated a large

body of experimental work using economic games, but have had less success in con-

texts outside of a controlled environment. Here I present there three topics in the

study of cultural transmission and inheritence that extend this work into observa-

tional contexts, and show how we can use Darwinian evolutionary theory to study

topics in ecology, demoraphy, and the historical record, in that order.

The first paper explores the geographic distribution of Oceanic canoe designs, as

recorded by early 20th century maritime anthropologists. We test how different as-

pects of these designs are associated with key ecological factors on the Pacific islands

they appear, and social proximity to other island groups both in the Polynesian set-

tlement sequence and known trade routes. In particular, we find statistical evidence

that many canoe designs common in low-resource Oceanic islands tend to be aban-

iv



doned upon reaching the high-resource environments of Hawaii and New Zealand, a

kind of ecological release in technological design.

The second paper is on evolutionary methods, and focuses on how we can quantify

the importance of demographic processes on observed phenotypic change within a

population. This methodology, which we call evolutionary decomposition, exactly

partitions a phenotypic trajectory into meaningful terms, allowing us to say how

much differential reproductive success, migration, mortality, individual change, and

parent-offspring transmission fidelity influence a cultural change. We demonstrate

how this can be applied to historical demography by decomposing census data drawn

from a large-scale simulation involving tens of thousands of humans in a growing

population over several centuries.

The third paper attempts to understand observed historical changes in a real-

world dataset, a large collection of games of the East Asian board game known as

Go. Here we combine the statistical tools of the first paper with the decompostion

methods of the second to examine an extraordinarily high-resolution record of cultural

change. Here we are able to demonstrate conclusively that (a) these trends are due

almost entirely to learning within the population, rather than cohort effects, and

(b) there is strong evidence that this learning is social in nature, as players draw

upon the knowledge available in the experiences of others. These results provide an

excellent reconstruction of the historical record, and are used to describe an ongoing

evolutionary arms race taking place within the opening moves of Go.

Taken together, these three papers demonstrate how cultural evolution models can

inform research in anthropology and history, and hopefully resolve debates in these

fields about whether historical cultural dynamics can be thought of in evolutionary

terms.
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1

Chapter 1

Ecology, Inheritance, and the

Evolution of the Canoes of East

Oceania

1.1 Introduction

Anthropologists have long debated the relative influence of cultural inheritance and

ecological adaptation on the evolution of a society’s social, technological and institu-

tional forms. Historically-minded social scientists stress the entrenching effects of the

social reproduction of culture, which allow cultural continuity over time and provide

the defining structures of society (Gaddis, 2002; Wimsatt and Griesemer, 2007). Both

theoretical modeling and empirical analysis have indicated that idiosyncratic aspects

of a society’s technological and behavioral repertoire do indeed persist across time

and space, plausibly due to processes of cultural transmission that resist innovation

(Edgerton, 1971; Guglielmino et al., 1995; Nisbett and Cohen, 1996; Richerson and
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Boyd, 2005; Eerkens et al., 2006; Temkin and Eldredge, 2007).

Others, however, favor the simplifying premise that human behavioral adaptation

can occur quickly enough to be seen as a product of a group’s contemporary ecological

environment (Steward, 1955; Diamond, 2002). An environment’s climate, availability

of potable water, mineral resources, and domesticable animals and plants may signifi-

cantly constrain or influence socio-political systems (Johnson and Earle, 2000; Kirch,

2007), regardless of their particular cultural histories or neighbors (Rogers and Cash-

dan, 1997; Cashdan and Rogers, 1997). In problems of reproductive investment and

subsistence strategies, humans appear to regularly maintain near-optimal behavior

with respect to their inclusive fitness, providing support for the “phenotypic gambit”

(Winterhalder and Smith, 2000).

While some form of cultural transmission or scaffolding is obviously necessary for

any technological continuity in space or time, adaptation to a local environment may

be fast enough that a society’s particular history or larger social context does not

meaningfully add to our understanding of its configurations. Conversely, if historical

entrenchment or the influence of trade networks are pronounced, a society’s ecological

context may have very little to do with its forms of material culture. Despite the

importance of these hypotheses to social science, and decades of sometimes polemical

debate about what matters and what does not (Harris, 1968; Sahlins, 1976; Betzig,

1997), the relative importance of these influences remains poorly understood. Us-

ing methods from information theory, we formalize these alternatives as statistical

models and apply a model selection analysis to patterns of material variation in the

canoe designs of Polynesia and Fiji. This approach allows us to quantify the relative

explanatory benefits of situating a society within its historical, social and ecological

context when studying an observed pattern of cultural variation.



1.1. Introduction 3

1.1.1 Canoe evolution in Polynesia & Fiji

Pacific societies have attracted generations of anthropologists and ecologists for their

ability to serve as natural “laboratories” of human behavior and socio-ecological pro-

cesses (Mead, 1957), and are particularly useful for testing models of cultural trans-

mission and behavioral ecology. Although the peopling of the Pacific has captured

the attention of centuries of scholarship, debates continue about (a) how purposive

Polynesian voyaging was (Whyte et al., 2005), (b) the sequence and methods of set-

tlement (Irwin, 1992), (c) how quickly it occurred (Anderson, 2000; Thomas, 2008;

Gray et al., 2009), (d) the extent of pre-European trade and interaction (Weisler,

1998), (e) the kinds of canoes and sailing rigs employed in these activities (Doran,

1981; Anderson, 2001), and (f) the evolutionary processes that shaped them (Hor-

ridge, 1987). Apart from the written accounts of Europeans, very little information

is known about the canoe technology of pre-contact Polynesia. In the early twen-

tieth century, A.C. Haddon and James Hornell compiled the three-volume Canoes

of Oceania from available written accounts and their own field observations, a work

that still remains the authority on Polynesian seacraft (Haddon and Hornell, 1936).

A recent paper by Rogers and Ehrlich (Rogers and Ehrlich, 2008) uses data ex-

tracted from this source to argue that the diversity in canoe design observed across

Fiji and Polynesia was likely shaped by differential viability selection: canoe compo-

nents vital to successful voyaging experienced strong negative, stabilizing selection

pressures, while decorative traits were less constrained and changed more rapidly

over time. The authors use the descriptions of the canoes on eleven different Pacific

archipelagos in Canoes of Oceania to measure the relative amount of change in ca-

noe technologies via a table of presence-absence data for 134 distinct canoe traits,

classified as either “symbolic” or “functional”. They demonstrate that functional
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components of canoes are significantly more similar across archipelagos than decora-

tive canoe traits, as measure by Jaccard distance matrices.

These results have been criticized as ambiguous (Skoyles, 2008); a “significant”

difference between the two subsets of canoe traits may be due to negative selection

pressures but is consistent with any number of random or directional processes, only

a few of which support an evolutionary selection hypothesis.

Because aggregate historical data are often unsuitable for distinguishing between

particular processes of cultural change, we instead attempt a pattern-centric analysis

which contextualizes the canoe data, and can identify general characteristics of the

causal evolutionary forces even as they remain unknown. Specifically, by situating

canoe designs within their ecological and social milieu, we ask which factors in an

archipelago’s local environment, settlement history, and regional trade networks best

predict the observed trait variation. This contextualizing, empirically rich approach

is also applied to the dataset; we have extensively modified the Rogers and Ehrlich

(2008) canoe traits, merging or excluding them based on the practical details of canoe

design (see chapter appendix for details).

1.2 The Model Selection Approach

While popular, many standard null-hypothesis tests were initially developed in the

early twentieth century for the analysis of randomized, controlled experiments, and

their limitations are well-documented (Berger and Berry, 1988; Cohen, 1994; Ander-

son et al., 2000). Recent advances in statistical methodology have produced methods

better suited for observational data, and as a result are becoming extensively used

in field ecology and evolutionary biology (Hilborn and Mangel, 1997; Johnson and

Omland, 2004; Bolker, 2008). This methodology does not attempt to measure the
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probability of seeing data given an assumed model, nor does it employ arbitrary cut-

offs to decide which estimates are “significant”, so as a result there are no p-values.

Instead, the focus shifts to measuring which model represents the closest approxi-

mation of the processes behind the data (Burnham and Anderson, 2002). Information-

theoretic methods attempt to measure the amount of information lost by approxi-

mating an infinite-dimensional reality with a model of finite dimensions, by ranking

models based on their information-criterion scores.

Rather than construct a single model aiming for “significant” covariates, the chal-

lenge then shifts to developing several plausible models that embody a diversity of

potential hypotheses, and using the model selection framework to test them simul-

taneously. An often-used analogy is a horse race: while it is sometimes possible to

distinguish the best performing horse after a single race, with several close competi-

tors it would be premature to proclaim the winner of one particular race the fastest.

Similarly, the particularities of one sample of data may be responsible for one model

ranking marginally higher than several close competitors, when in fact they all may

be reasonable approximations and should be reported together. Thus, rather than

attempt to argue for or against a single hypothesis, our focus shifts to evaluating

multiple hypotheses simultaneously.

1.2.1 Models of Cultural Inheritance

Our models of Polynesian cultural inheritance focus on two forms of transmission:

the inheritance of material culture via colonization, and the flow of information and

material technology between established island societies. Given that the exact island-

to-island settlement sequence of Polynesia is still contested (Kirch, 2000; Rogers et al.,

2009), we define it in broad, regional generalizations (Figure 1.1, black arrows). Cur-
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Tonga

Fiji

Hawaii

Samoa

Cook

Society
Tuamotos

Marquesas

Austral

c. 1000 CE 

c. 200 BCE 

Manihiki

New Zealand

Australia

Papua 
New Guinea

c. 400 CE 

Figure 1.1: Settlement sequence following Kirch (2000, black arrows) and five major post-
settlement interaction spheres (shaded regions) based on Weisler (1998) in the eastern
Pacific.

rently, it is established that the Polynesian settlers moved west to east through four

major regions: first, the triangular region defined by Fiji, Samoa and Tonga, then onto

the Cook, Society, Tuamotos, and Austral archipelagos making up Central Polynesia,

and from there north to Hawaii and southwest to New Zealand. Broadly speaking,

these four regions can be considered a settlement sequence, and so canoe designs in

one region may help predict canoe designs in the next region in the sequence. Hawaii

petroglyphs, for example, indicate that the Hawaiian crab-claw sail has a common

ancestry with the Tahitian analog, and so knowledge about Tahitian canoes should

presumably inform us about Hawaiian designs as well (Lewis, 1978).

Post-settlement interactions between archipelagos also clearly played a role in

shaping canoe designs. The Fijian ndrua double canoe, described by Haddon and

Hornell as the “largest and finest sea-going vessel ever designed” in the Pacific, in-
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corporated a shunting-capable rig1 from nearby Micronesia and in turn was the basis

for the Tongan kalia design and the Samoan ’alia design (Haddon and Hornell, 1936,

pg. 319). Canoe diffusion was often very direct - Haddon and Hornell report that

Society islanders would employ Tuamotoan canoe builders, who in turn imported

Tahitian hulls (Haddon and Hornell, 1936, pg. 74,79). Weisler (1998) presents evi-

dence for six major interaction spheres in the South Pacific, defined by tracing basalt

adzes back to their islands of origin using x-ray florescence techniques. Using Weisler’s

geochemical diffusion data as a guide, we group the islands in our dataset into five

general zones of interaction within which canoe technology might have been regu-

larly shared (Figure 1.1, shaded regions). Both inheritance from trading spheres and

the island-to-island phylogenetic settlement sequence are included as covariates (see

chapter appendix for specifications of each).

1.2.2 Models of Ecology

We must also consider the possibility that two societies will resemble each other sim-

ply because they exist in similar ecological environments, regardless of whether they

interact with each other or share common ancestors. As Kirch describes the experi-

ence of migrating Polynesians, “Whether the new land was too isolated to maintain

contacts with the homeland, whether it was vast or small, high or low, endowed

with permanent streams, and so on, were factors that were to channel evolution-

ary pathways in certain directions.” (Kirch, 1984). Canoe builders may converge

on hull designs again and again because of ecological pressures or the availability of

certain critical resources. For example, islands with protective reefs or atolls with en-

closed lagoons allowed for relatively simple dugout designs with low freeboard, while

1Shunting is an innovation for sailing against the wind unique to Oceanic seacraft in which the
rigging is reversed so the fore becomes the aft and vis versa. See chapter appendix for details.
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open-ocean canoes necessitated raised washstrakes and weather screens. The narrow

Polynesian timber available for basic dugout canoe construction was easily capsized,

and for anything but the calmest seas required a secondary stabilization mechanism

in the form of an outrigger float or second hull. Once Polynesians reached New

Zealand, though, larger trees obviated the outrigger and double hull designs, both

of which disappeared altogether after the cessation of regular long-distance voyag-

ing. Astronomical wayfinding techniques were lost, and Maori terminology specific to

outrigger construction was either abandoned or repurposed to describe single-hulled

Maori designs (Biggs, 2006).

The above motivates a number of ecological covariates. Because the geological

histories of island chains are effective proxies for many other ecological differences

between Polynesian archipelagos (Kirch, 2000), the elevation profile of an island (atoll,

high island, or the coral-uplift makatea island) and the presence or absence of a reef

are included as ecological covariates. Island area can be interpreted as a proxy for

natural resource availability (Banack, 1991), the degree to which its inhabitants relied

on trade with other islands for vital supplies, as well as a low-resolution measure

of population density and carrying capacity.2 Ecological data were collected from

descriptions in Mueller-Dombois and Fosberg (1998) and through a cross-Oceanic

survey using satellite images from Google Earth.

2The large size of both Hawaii and New Zealand provide dramatic examples of the effect of area
on population size. Even though New Zealand is more appropriately seen as a small continental
remnant of Gondwana, we classify it as a high island because its elevation gradients bring similar
advantages to the mountainous volcanic islands for canoe technology, such as more diverse and
abundant plant and mineral resources.
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1.2.3 Model Specification and Estimation Using Bayesian

Statistics

Using these ecological and cultural covariates, we specified 27 logistic regression mod-

els to compare using model selection techniques, divided into four broad categories:

null models (N), models incorporating cultural inheritance (C), ecology (E), or both

(CE, see the chapter appendix for the details of model specification). The large num-

ber of models reflects the fact that environmental and cultural inheritance predictors

can influence canoe design in many ways; there is no general theory constraining the

structure of these models.

If i ∈ 1, 2, . . . , 11 indexes island group and t ∈ 1, 2, . . . , 65 indexes canoe traits,

then the binary variable xt,i ∈ {0, 1} describes the presence or absence of trait t on

island group i for the 65 × 11 matrix of island traits X. Since the goal is to predict

xt,i, the general form of each model is

Logit Pr(xt,i = 1) = αt + ZiB,

where Zi is a vector of ecological and cultural inheritance covariates for island i and

B is a vector of coefficients. We know beforehand that different traits likely do not

occur with the same baseline frequency (the intercept in a logistic regression model),

so we need to estimate a frequency, αt, for each trait (see chapter appendix). The

need to model variation in a large number of traits suggests a model with a large

number of parameters, yet the number of island groups represented is relatively small.

The classic frequentist approach is unsuitable under these conditions because there is

too little data and consequently too few degrees of freedom to fit a large model. We

solve this problem by using a single prior distribution for all αt, resulting in models
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containing 1 to over 150 parameters. This allows us to make a relatively parsimonious

model for baseline frequencies, yet permits frequencies to vary across traits.

Because little or no prior information is available, we assign Gaussian priors with

high variances to all parameters. The prior for αt has a mean of zero and a variance

of 10, whereas all other parameters have prior variances of 100 (see Box 1 in the

chapter appendix for common terms in Bayesian statistics). Using a Gibbs sampler

implemented in the software R and Winbugs, we estimate posterior distributions and

the Deviance Information Criterion (DIC), an analog to the more common AIC and

BIC for Bayesian model selectionSpiegelhalter et al. (2002); Gill (2008). For logistic

regression there is no true equivalent of R2, the proportion of variance in the data ex-

plained by the model. Instead we compare our models’ performance to “benchmark”

or null models. Two null models, one with a constant intercept across all traits and

islands (‘Weighted coinflip’) and no covariates, and another having an intercept for

each trait (‘Base’, again without other covariates) are included to compare the added

predictive power of models with ecological and inheritance covariates.

1.3 Results

We classify 65 distinct canoe traits for 11 island groups into six general categories:

hull design, decoration, rigging, paddles, outrigger traits and double-hulled canoe

traits (see chapter appendix for details). DIC scores were calculated for each of the

27 models fitted to the full dataset, and separately fitted to each of the six trait

subsets. Since these scores are only meaningful in relation to those of other models,

a given model’s absolute score is less important than its relative distance to the top

model’s score (∆ DIC) and the model’s information criterion weight, w. The results

of each analysis are presented in Figure 1.2, which measures the relative explanatory
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Sail & Rigging

Paddle

Outrigger

Hull

Double canoe

Decorative

All traits

Null Inheritance Ecology Inheritance & Ecology

99

7 40 20 32

2 50 14 34

1 7 1 91

1 2 14 82

2 48 6 44

3 19 3 75

Figure 1.2: Plot of the relative weight assigned to the four classes of models (where
whitespace represents null models). Size of each colored region represents the sum of
DIC weights attributed to that class of models, characterizing the relative weight of
evidence in favor of that class of model (Burnham and Anderson, 2002). The wider a
specific region the more likely the corresponding class of models describes the process
behind the evolution of that particular set of canoe traits. If no region is dominant,
there is less certainly or the models explain very little.

power of models that included only ecological covariates (E), covariates of cultural

inheritance (C), both (CE), and the two null models.

1.3.1 Model rankings

Considering all canoe traits, models that include both cultural and ecological (CE)

covariates consistently outperform those including either covariate category alone.

When considering all 65 traits, the top four models, all CE, constitute 99% of the total

DIC weight. Among the CE class of models, those that consider island settlement

sequence, island area, and geological type of island perform the best (see chapter
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0.0 1.0 2.0 5.0

Atoll

Reef High Is.

Reef Low Is.

Log(Area)

Sphere Present

Sphere Mean

Past.c

Past.v

Atoll

Reef High Is.

Reef Low Is.

Log(Area)

Sphere Present

Sphere Mean

Past.c

Past.v

Figure 1.3: Model-averaged odds-ratio estimates with 95% Upper and Lower bounds
for eight covariates. The first three covariates estimate the effects of modal properties
of the island group; whether or not the islands are atolls, high islands with reefs or low
islands with reefs. The remaining four covariates describe an island group’s cultural
ancestors and neighbors; ”sphere present” and ”sphere mean” consider the presence
and frequency, respectively, of each canoe trait within trade interaction spheres, while
”past.c” and ”past.v” consider the presence of each canoe trait among island groups
earlier in the settlement sequence, using constant or trait-varying imputed values,
respectively, for the first island group in the sequence (see chapter appendix).

appendix). The top model with 67% of the total weight considers only settlement

sequence and island type. The second model at 27% of the weight has the same

covariates as the top model but with the addition of the log(area) covariate. Finally,

the third ranking model adds trade spheres, though because its weight is only 4%,

post-settlement interactions between islands are less useful on average across these

data.

This basic pattern is also found for traits specific to the canoe’s hull, sail and

rigging, and traits specific to outriggers; CE models of one form or another rank

the highest and take up the majority of the model weights in each subcategory.
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The top model for hull traits, with 41% of the model weight, includes settlement

sequence, area, and island type. The next best (18%) includes trading partners and

drops island type, together covering all four covariate categories. Considering sail

and rigging traits, CE models rank highest, but the top models carry roughly equal

weight, indicating equivalent explanatory utility. For outrigger traits the top model at

42% weighting includes island type and settlement sequence, and the second ranked

model (26%) adds log(area) and trading spheres.

While models that include only cultural inheritance covariates occasionally out-

perform the composite CE models, though the same cannot be said for ecology models

or the null models. These C models dominated the rankings for paddle traits (Fig-

ure 1.2), whose top model considers only settlement sequence and trading spheres,

both present in nearly all models that outperformed the null. For double-hull canoe

traits, C models take up the majority of model weights, though among them there is

no clear winner.

The models rankings for decorative traits are in contrast to those of all other

trait subsets. The top two models consider only covariates of cultural inheritance,

constituting 13% and 11% of model weight, respectively. However, the third ranking

model, at 7%, is the null model Base, followed by CE and E models all at around 6%

of model weight. In general the model weights for decorative traits are distributed

among CE, C and E models roughly equally (Figure 1.2). We interpret the inability

to distinguish a clear winner and the prominence of the null model as evidence of

poor performance among all our models, and so none are particularly compelling

explanations the observed variation in canoe decoration (Burnham and Anderson,

2002).
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1.3.2 Effects of single covariates

We also report model-averaged odds-ratios (see chapter appendix for discussion on

model-averaging methods). Primarily, the estimates reflect the uncertainty in pre-

dicting canoe traits using any one particular covariate (the dimensions of our sample

are 11 islands by 65 traits, suggesting only sparse information). Most estimates have

lower and upper bounds that include 1.0, the value of “no effect”, though the poste-

rior means of many estimates are far from one. However, while some covariates may

have imprecise point estimates (broad posterior distributions), they do in many cases

contribute to a model’s performance in the above model rankings. Despite estimate

uncertainty, model selection methods can still be used to make inferences.

Some of the more precise and contrasting estimates are worth noting (Figure 1.3).

The ecological covariate “Reef High Is.”, a dummy variable for this island profile, has

a negative effect on all canoe traits taken together, and specifically outrigger and

(more ambiguously) hull traits. In terms of the odds ratio, any given canoe trait

is much less likely to be present on high, reefed islands than when island type is

unknown.

We also estimate strong negative predictive effects for settlement sequence co-

variates for a variety of canoe traits, meaning that they are less likely to be present

on an island group if those traits are present or common in the ancestral region of

the Pacific that settled that island group. Specifically, covariate “Past.c” has a neg-

ative predictive effect on canoe traits in general and a (more ambiguous) negative

effect on outrigger traits. The other settlement sequence covariate, “Past.v”, has a

particularly strong negative effect on hull and paddle traits. (We consider the effect

strong because the mean estimate is far from one and a relatively small portion of

the total interval extends across one). We registered only two estimates of positive
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effect on the odds ratio, both ambiguous; settlement sequence (“Past.v”) on double

canoe traits, and trading spheres (“Sphere mean”) on outriggers.

1.4 Discussion

Taken together, these results tell an interesting story about Oceanic canoe designs.

The majority of focal canoe traits are best explained by settlement sequence and

island type; there is little to no evidence that island land area or inter-island trade

enhances our understanding of canoe trait distribution. When clear, the estimated

effects of settlement sequence and island type are also strongly negative - our models

predict that the settlement of high, volcanic islands with reefs is followed by the

disappearance of these canoe traits. This is particularly true for outrigger and hull

designs.

Exactly why the settlement of high, reefed islands is associated with the absence

of our focal canoe traits is an open question. Of the eleven island groups considered,

two of the largest (Hawaii and New Zealand) have the fewest canoe traits (24 and 23

traits, respectively, out of 65). However, Fiji, by land area larger than Hawaii, has

34 traits, one of the highest in the sample. As a result, while models including the

log of island area are among the top ranked, the estimated effect of island area on

the odds ratio is negligible.

Instead of land area, our high island covariate may be capturing the effects of

greater natural resources available on high islands; Maori designs in New Zealand

could use trees so massive double-hull and outrigger designs were no longer necessary,

while canoe builders on low islands like the Tuamotos had to work with lashed planks

in lieu of simple dugouts. Indeed, many of the focal canoe traits in our sample can

be seen as adaptations to low-resource environments, and so it may be expected that
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these would be abandoned upon the ecological release of reaching Hawaii and New

Zealand.

Another possibility is the effects of population size on canoe design. Henrich (Hen-

rich, 2004) demonstrates how sampling error in low population sizes can cause the

decay and eventual disappearance of useful technology, such as observed on Tasma-

nia. The process on New Zealand and Hawaii may be roughly the opposite - massive

technological undertakings that require state-like centralized political authority and

the collective knowledge of large networks of canoe designers may rapidly replace

technological designs that can be sustained within smaller founding populations.

Both hypotheses imply that a key influence on the results is the processes about

which canoe traits are recorded and coded. This is a important methodological

point, as two subsequent analyses (Rogers et al., 2009; Gray et al., 2010) have been

carried out on the Rogers and Ehrlich (2008) dataset, and the results of each may

be sensitive to alternative coding. From the descriptions of Haddon and Hornell,

among others, New Zealand and Hawaii clearly do not have a dearth of canoe designs.

However, because the focus of anthropological analysis is the flow of canoe designs

across Polynesia, variations in canoe technology unique to these end-sequence islands

groups may be underrepresented in the analyses. Using our methods, future work

that includes a greater emphasis on the diversity of canoe technology on high volcanic

islands, as influenced by population size and natural resource constraints, should be

able to provide an answer on this issue.

Though there are good theoretical reasons to think these methods reliably ex-

tract information from the data at hand, those results must be evaluated in light

of prior knowledge about the historical record. Since there is strong evidence from

oral histories that shunting-capable sailing rigs spread from Fiji through a settled
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Polynesia, the fact our models do not nominate inter-island trade in the “sail and

rigging” analysis may say more about our sample and coding procedures than the

actual diffusion of canoe technology. Likewise, other covariates that better capture

neutral drift and the dynamics of ethnic markers may prove to be more effective at

explaining the distribution of decorative traits.

Despite these reservations, our results present clear quantitative evidence that

statistical models incorporating both ecological and cultural inheritance covariates

are better explanations of Oceanic canoe designs than either alone. Moreover, using

these methods we are able to elucidate interesting patterns in the historical record

without arguing for or against particular evolutionary processes. Our analysis pro-

vides support for the inclusion of both social-historical and ecological perspectives

in the study of Polynesian seafaring, and demonstrates a method by which histori-

ans and anthropologists can test hypotheses of cultural change through the direct

comparison of formalized statistical models.
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1.5 Appendix to Chapter 1

1.5.1 Canoe Supplement

Figure 1.4: Illustration of shunting procedure. This technique for moving upwind
involves turning the canoe at a right angle from the prevailing wind, manually lifting
the tack out of its fore socket, and carefully walking it to the other end of the canoe
to insert in an equivalent socket in the aft, reversing the direction of sailing.
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Figure 1.5: Tongan dugout with outrigger. Two booms and indirect U-shaped stan-
chions connect main hull to outrigger float. Low freeboard (distance between water-
line and gunwale) and lack of washstrakes (added planks along sides to keep the sea
out) make this canoe more vulnerable to swamping compared to that in Figure 3.
Photo by A.V. Bell.

figures/canoes/ESMFigure3.jpg

Figure 1.6: Micronesian outrigger. Photo by Kathryn Demps.

1.5.2 Model Selection Methods

The deviance information criterion is

DIC = −2log(L(θ̂)) + 2pD

where log(L(θ̂)) is the average deviance over 100,000 simulations using WinBUGS

and pD is the effective number of parameters. The relative distances, rather than
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absolute magnitudes, of the DIC scores of the models are the basis for comparing

them, and so it is common to report each models ∆ DIC relative to the top model

(with the lowest DIC score). Among all R models used in the model comparison,

DIC weights are calculating for model i with associated ∆ DIC di via

wi =
exp(−0.5di)∑R
r=1 exp(−0.5dr)

Rather than report the parameter estimates from a particular model, we can use

the DIC weights and parameter estimates of all models to create model-weighted

estimates (Burnham and Anderson, 2002). Specifically, the vector of model-weighted

estimates across a set of R models is given by

θ̂ =
R∑
i=1

wiθ̂i

where θi is the estimate of parameter θ for model i, wi is the DIC weight for model

i, and θ̂ is the model-averaged estimate of θ. Model-weighted variance is calculated

in a similar way, save for an additional term to account for the uncertainty among

models (Burnham and Anderson, 2002), yielding

v̂ar(θ̂) =

[
R∑
i=1

wi

√
v̂ar(θ̂i|gi) + (θ̂i − θ̂)2

]2

1.5.3 Data Reprocessing

Our dataset classified 65 distinct canoe traits based on descriptions in Haddon and

Hornell’s Canoes of Oceania. Beginning with Rogers and Ehrlich’s (2008) 134-trait

dataset, we excluded or merged traits which were most likely to be affected by record-

ing biases, practical dependencies and coding errors.
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For example, although encyclopedic in their treatment, Haddon and Hornell em-

ploy an inconsistent use of certain terms, such as sennit and coir, whose distinctive-

ness is critical to traits coded as OAH12, OAH13 and DAH11. In such cases, traits

were merged to eliminate the potential for artificial distinction.

Additionally, since many of the descriptions in Canoes of Oceania were culled by

Haddon and Hornell from a hodgepodge of accounts by European explorers, mission-

aries, merchants, and scholars over a period of several hundred years, the potential

for simple omission of a canoe trait actually present on an island group is consider-

able. That Fijian double canoes ranged from 25 to 72 feet in length, 97 to 120 feet

in length, but not in-between suggests the presence of a ethnographic sampling bias,

rather than some actual design preference or constraint.

In some cases, the supplementary table in Rogers and Ehrlich (2008) is clearly

missing data; use of Hawaiian canoes for fishing was coded as “absent” (OCP2,

DCP2), even though both double-hull and outrigger canoes had fishing-pole rests

(OAF1, DAF1). Similarly, though outrigger canoes were common in both the Aus-

trals and Tonga, traits OAO1 (“Outrigger present on port side”) and OAO2 (“Out-

rigger present on starboard side”) are both coded as “absent” for these archipelagos,

a logical impossibility. Coding the orientation of the outrigger floats is particularly

problematic because Polynesian canoes were often designed to sail with either end

facing forward and have no permanent starboard and port, rendering such traits es-

sentially meaningless. To circumvent this problem, we excluded traits likely to be

missing data points or whose presence in the island group was ambiguous among the

primary sources.

Furthermore, several traits were excluded because of likely influence of practical

interdependencies, invisible to covariance screening tests because of potentially large
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sampling biases and the confused nomenclature in Canoes of Oceania. For example,

“mast stepped forward” and “Oceanic Lateen sail present” are treated in the original

dataset as independent traits, despite the fact that the former is a necessary com-

ponent of the latter (Doran, 1981). Doran’s survey of Austronesian canoe designs

synthesizes a variety of reports by Haddon and Hornell into distributional maps, and

also provides the basis for our data on the distribution of shunting and the use of the

primitive crane sprit.

Finally, we compacted equivalent double-hull traits and outrigger traits, on the

premise that any discrepancies between the two categories represent noise rather than

useful information. Considering the regularity by which outrigger and double-hulled

canoes were converted from one to the other in Polynesia, the notion that traits on

one canoe type should be distinct from traits on the other does not appear tenable.

1.5.4 Model Specification and Estimation

We introduce some notation to describe trait distributions and our models. Let

i ∈ {1, 2, . . . , 11} index island group and t ∈ {1, 2, . . . , 65} index canoe traits. Then

binary variable xt,i ∈ {0, 1} describes the presence or absence of trait t on island

group i for the 65 × 11 matrix of island traits X.

Using the currently understood colonization sequence (see Figure 1 of the main

text), let Ci be the set of island groups within the region that colonized island group

i, and |Ci| be the number of island groups in Ci. Now, the frequency of trait t in the

colonizing region Ci of island group i is yt,i =
(∑

j∈Ci
xt,j

)
/|Ci|. Now let Si be the set

of island groups within the sphere of influence of island group i, based on the zones

of interaction compiled by Weisler (1998), and |Si| be the number of island groups

in Si. Then the frequency of trait t in the sphere of influence Si of island group i is
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mt,i =
(∑

j∈Si
xt,j

)
/|Si|. Because data sources are not properly collected statistical

samples in any sense, we should consider that the presence of a trait in a region is

more diagnostic for cultural transmission than its observed frequency (as recorded in

Haddon and Hornell (1936)). Hence, for interaction spheres, we also consider sphere

presence/absence models using pt,i = 1 if mt,i > 0, and 0 otherwise.

Since the goal is to predict xt,i ∈ {0, 1}, the general form of the model for trait t

is

Logit Pr(xt,i = 1) = αt +BZi

, where Zi is a vector of ecological and cultural inheritance covariates for island i and

B is a vector of coefficients. Table 1.1 shows examples of null (N) models, cultural

inheritance (C) models, ecological (E) models, and the cultural inheritance-ecological

(CE) models.

Using a Gibbs sampler implemented in the software R and Winbugs, we estimate

posterior distributions and the Deviance Information Criterion (DIC). For each run of

the Gibbs sampler we perform 100,000 interations with a burn-in of 50,000 interations.

Starting values for continuous parameters were randomly drawn from a Gaussian

distribution with mean zero and variance 1, and binary parameters randomly drawn

from a Binomial distribution with the probability of a success (drawing a value of

one) equal to one-half.
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Model name Logit Pr(xt,i = 1) =
Null models
N1: Weighted coinflip α
N2: Base αt
Inheritance
C1: Past αt + β1yt,i
C2: Past & Sphere Present αt + β1yt,i + β2pt,i
Ecology
E1: Island area αt + βai
E2: Reef high & low & Atoll αt + κ1rh,i + κ2rl,i + κ3ra,i
Inheritance & Ecology
CE1: Past & Area αt + γyt,i + βai
CE6: Past & Sphere Present & Area & Island
type

αt+γyt,i+λpt,i+βai+κ1rh,i+κ2rl,i+κ3ra,i

Table 1.1: Representative models of those considered in this analysis. The average
island size in the focal archipelago (ai), and “Island Type” represents “Reef high”
(rh,i), “Reef low” (rl,i), or “Atoll” (ra,i).
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Models DIC ∆ DIC w
mPast2ReefHighLowAtoll 944.75 0 0.67
mPast2AreaReefHighLowAtoll 946.56 1.81 0.27
mPast2SpherePresentAreaReefHighLowAtoll 950.43 5.68 0.04
mPast2Area 953.01 8.26 0.01
mReefHighLowAtoll 954.64 9.89 <0.01
mReefHighAtoll 955.35 10.6 <0.01
mPast2SphereMeanAreaReefHighLowAtoll 956.23 11.48 <0.01
mBase 957.57 12.82 <0.01
mPast2SphereMeanArea 958.33 13.58 <0.01
mPast2 958.46 13.71 <0.01
mArea 959.5 14.75 <0.01
mSphereMean 959.78 15.03 <0.01
mSpherePresent 960.57 15.82 <0.01
mAreaReefHighAtoll 960.81 16.06 <0.01
mAreaReefHighLowAtoll 963.3 18.55 <0.01
mPast2SpherePresentArea 965.16 20.41 <0.01
mPastReefHighLowAtoll 969.62 24.87 <0.01
mPastSphereMeanAreaReefHighLowAtoll 971.35 26.6 <0.01
mPastSpherePresentAreaReefHighLowAtoll 978.44 33.69 <0.01
mPastAreaReefHighLowAtoll 981.08 36.33 <0.01
mCoinFlip 989.51 44.76 <0.01
mPastSphereMeanArea 1022.93 78.18 <0.01
mPastSpherePresent 1027.01 82.26 <0.01
mPastSpherePresentArea 1033.41 88.66 <0.01
mPastSphereMean 1037.35 92.6 <0.01
mPastArea 1047.06 102.31 <0.01
mPast 1048.18 103.43 <0.01

Table 1.2: Model rankings for all canoe traits. ∆ DIC is the difference between a
model’s DIC score and the top model’s, and DIC weights (w) quantify the relative
performance among models. The best-performing null model is highlighted in bold;
models with higher rankings (lower DIC scores) are plausibly better at explaining the
data than the null model.
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Models DIC ∆ DIC w
mSpherePresent 55.69 0.00 0.13
mPastSpherePresent 56.11 0.42 0.11
mBase 56.98 1.29 0.07
mReefHighAtoll 57.17 1.48 0.06
mArea 57.25 1.56 0.06
mPastArea 57.63 1.94 0.05
mPast 57.71 2.02 0.05
mPastSpherePresentArea 57.73 2.04 0.05
mSphereMean 57.87 2.18 0.04
mPast2Area 57.93 2.24 0.04
mPastSphereMean 58.25 2.56 0.04
mAreaReefHighAtoll 58.35 2.66 0.03
mPast2SpherePresentArea 58.39 2.69 0.03
mPast2 58.41 2.72 0.03
mPastSpherePresentAreaReefHighLowAtoll 58.80 3.11 0.03
mReefHighLowAtoll 58.90 3.20 0.03
mPastSphereMeanArea 59.19 3.50 0.02
mPast2ReefHighLowAtoll 59.31 3.62 0.02
mPast2SphereMeanArea 59.68 3.99 0.02
mPastReefHighLowAtoll 59.81 4.12 0.02
mAreaReefHighLowAtoll 59.97 4.28 0.02
mPastAreaReefHighLowAtoll 60.70 5.01 0.01
mPast2AreaReefHighLowAtoll 60.94 5.25 0.01
mPast2SpherePresentAreaReefHighLowAtoll 61.40 5.71 0.01
mPastSphereMeanAreaReefHighLowAtoll 61.65 5.96 0.01
mCoinFlip 62.08 6.39 0.01
mPast2SphereMeanAreaReefHighLowAtoll 63.06 7.37 <0.01

Table 1.3: Model rankings for decorative canoe traits.
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Models DIC ∆ DIC w
mPastSphereMean 115.62 0.00 0.11
mSpherePresent 115.62 0.00 0.11
mPast 115.89 0.27 0.10
mPastSpherePresent 116.16 0.54 0.09
mPastArea 116.34 0.72 0.08
mPast2 116.58 0.96 0.07
mPastSpherePresentArea 117.37 1.75 0.05
mAreaReefHighAtoll 117.37 1.75 0.05
mPast2Area 117.51 1.89 0.04
mReefHighAtoll 117.64 2.02 0.04
mPastReefHighLowAtoll 118.00 2.38 0.03
mPast2SpherePresentArea 118.10 2.49 0.03
mPastSphereMeanArea 118.40 2.78 0.03
mSphereMean 118.79 3.17 0.02
mBase 118.90 3.28 0.02
mPast2SphereMeanArea 119.09 3.47 0.02
mArea 119.12 3.50 0.02
mAreaReefHighLowAtoll 119.40 3.78 0.02
mReefHighLowAtoll 119.92 4.30 0.01
mPast2ReefHighLowAtoll 119.94 4.32 0.01
mPast2AreaReefHighLowAtoll 120.29 4.67 0.01
mPast2SpherePresentAreaReefHighLowAtoll 120.45 4.84 0.01
mPastSpherePresentAreaReefHighLowAtoll 121.10 5.48 0.01
mPastSphereMeanAreaReefHighLowAtoll 121.28 5.66 0.01
mPastAreaReefHighLowAtoll 122.00 6.38 <0.01
mPast2SphereMeanAreaReefHighLowAtoll 122.70 7.08 <0.01
mCoinFlip 123.30 7.68 <0.01

Table 1.4: Model rankings for double-hull canoe traits.
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Models DIC ∆ DIC w
mPastAreaReefHighLowAtoll 269.13 0.00 0.41
mPastSphereMeanArea 270.84 1.70 0.18
mPastSphereMeanAreaReefHighLowAtoll 271.47 2.34 0.13
mPastSpherePresentAreaReefHighLowAtoll 273.32 4.19 0.05
mPastSphereMean 273.86 4.72 0.04
mPastReefHighLowAtoll 274.13 4.99 0.03
mPastArea 274.52 5.39 0.03
mPast2Area 274.87 5.73 0.02
mPast2SphereMeanArea 275.09 5.95 0.02
mPast2 275.26 6.12 0.02
mPast2SpherePresentArea 276.52 7.38 0.01
mBase 276.95 7.82 0.01
mPast2ReefHighLowAtoll 277.11 7.98 0.01
mArea 277.37 8.23 0.01
mPast2AreaReefHighLowAtoll 277.50 8.37 0.01
mPastSpherePresentArea 278.12 8.99 <0.01
mSphereMean 278.16 9.02 <0.01
mSpherePresent 278.90 9.77 <0.01
mPastSpherePresent 279.27 10.14 <0.01
mPast2SpherePresentAreaReefHighLowAtoll 279.86 10.73 <0.01
mPast 280.17 11.04 <0.01
mReefHighAtoll 280.22 11.08 <0.01
mPast2SphereMeanAreaReefHighLowAtoll 280.32 11.19 <0.01
mAreaReefHighAtoll 280.89 11.76 <0.01
mReefHighLowAtoll 281.34 12.21 <0.01
mAreaReefHighLowAtoll 282.17 13.04 <0.01
mCoinFlip 284.42 15.28 <0.01

Table 1.5: Model rankings for hull traits.
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Models DIC ∆ DIC w
mPast2ReefHighLowAtoll 232.36 0.00 0.42
mPast2SphereMeanAreaReefHighLowAtoll 233.33 0.98 0.26
mReefHighLowAtoll 236.03 3.67 0.07
mAreaReefHighLowAtoll 236.35 3.99 0.06
mPast2AreaReefHighLowAtoll 236.86 4.50 0.04
mPast2SpherePresentAreaReefHighLowAtoll 237.61 5.26 0.03
mPastSpherePresentArea 238.24 5.88 0.02
mPastSphereMeanAreaReefHighLowAtoll 239.11 6.76 0.01
mPast2SphereMeanArea 239.79 7.43 0.01
mSphereMean 240.07 7.71 0.01
mPastSphereMeanArea 240.07 7.72 0.01
mPast2 240.09 7.73 0.01
mBase 240.15 7.79 0.01
mReefHighAtoll 240.26 7.90 0.01
mAreaReefHighAtoll 240.53 8.18 0.01
mPast2SpherePresentArea 241.20 8.84 0.01
mArea 241.28 8.93 <0.01
mSpherePresent 241.88 9.53 <0.01
mPastReefHighLowAtoll 243.08 10.72 <0.01
mPast2Area 244.03 11.68 <0.01
mPastArea 244.84 12.48 <0.01
mPastSpherePresentAreaReefHighLowAtoll 245.01 12.65 <0.01
mPastAreaReefHighLowAtoll 245.28 12.93 <0.01
mCoinFlip 245.81 13.45 <0.01
mPastSphereMean 246.74 14.38 <0.01
mPast 248.77 16.41 <0.01
mPastSpherePresent 249.22 16.87 <0.01

Table 1.6: Model rankings for outrigger canoe traits.
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Models DIC ∆ DIC w
mPastSphereMean 123.91 0.00 0.32
mPast2SphereMeanArea 126.26 2.35 0.10
mPastSphereMeanArea 126.64 2.73 0.08
mPastSpherePresentArea 126.90 2.99 0.07
mPastSphereMeanAreaReefHighLowAtoll 127.20 3.29 0.06
mPast 127.59 3.68 0.05
mPastSpherePresent 127.98 4.07 0.04
mSphereMean 128.37 4.45 0.03
mPastArea 128.60 4.69 0.03
mArea 129.01 5.09 0.03
mPast2SpherePresentArea 129.03 5.12 0.02
mBase 129.18 5.27 0.02
mPast2SphereMeanAreaReefHighLowAtoll 129.20 5.28 0.02
mPast2 129.53 5.61 0.02
mPast2Area 129.67 5.76 0.02
mPastSpherePresentAreaReefHighLowAtoll 130.96 7.05 0.01
mReefHighAtoll 131.00 7.09 0.01
mReefHighLowAtoll 131.16 7.25 0.01
mSpherePresent 131.32 7.41 0.01
mAreaReefHighAtoll 131.49 7.58 0.01
mPast2SpherePresentAreaReefHighLowAtoll 131.79 7.88 0.01
mPastAreaReefHighLowAtoll 131.81 7.89 0.01
mAreaReefHighLowAtoll 131.93 8.02 0.01
mPastReefHighLowAtoll 132.17 8.26 0.01
mPast2ReefHighLowAtoll 132.57 8.66 <0.01
mPast2AreaReefHighLowAtoll 133.86 9.95 <0.01
mCoinFlip 135.62 11.71 <0.01

Table 1.7: Model rankings for all paddle traits.
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Models DIC ∆ DIC w
mPastAreaReefHighLowAtoll 132.27 0.00 0.18
mPastArea 132.31 0.04 0.18
mPastSphereMeanArea 133.16 0.89 0.11
mPastSpherePresentArea 133.40 1.13 0.10
mPast2 134.39 2.12 0.06
mPast 134.49 2.22 0.06
mPast2Area 135.10 2.83 0.04
mPastSpherePresentAreaReefHighLowAtoll 135.53 3.26 0.04
mPast2SpherePresentArea 135.71 3.44 0.03
mPast2SphereMeanArea 135.74 3.47 0.03
mPastSphereMean 135.77 3.50 0.03
mPastSpherePresent 136.56 4.29 0.02
mBase 136.66 4.38 0.02
mPastSphereMeanAreaReefHighLowAtoll 136.79 4.52 0.02
mArea 136.94 4.66 0.02
mSphereMean 137.94 5.67 0.01
mReefHighAtoll 138.80 6.53 0.01
mPast2AreaReefHighLowAtoll 138.81 6.53 0.01
mPastReefHighLowAtoll 138.82 6.55 0.01
mSpherePresent 138.97 6.70 0.01
mCoinFlip 139.31 7.03 0.01
mPast2ReefHighLowAtoll 139.81 7.54 <0.01
mAreaReefHighAtoll 140.05 7.77 <0.01
mPast2SphereMeanAreaReefHighLowAtoll 141.02 8.75 <0.01
mAreaReefHighLowAtoll 141.29 9.02 <0.01
mReefHighLowAtoll 141.30 9.03 <0.01
mPast2SpherePresentAreaReefHighLowAtoll 142.46 10.18 <0.01

Table 1.8: Model rankings for sail and rigging traits.
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Chapter 2

Evolutionary Decomposition and

the Mechanisms of Cultural

Change

2.1 Introduction

For the last half-century, many anthropologists and evolutionary biologists have in-

dependently realized the fundamental connection between evolutionary theory and

cultural change (Campbell, 1965; Cavalli-Sforza and Feldman, 1981; Boyd and Rich-

erson, 1985; Durham, 1992; Lumsden and Wilson, 2005; Dawkins, 2006). Recent

decades have witnessed a proliferation of theory regarding the evolution of cultural

capacities and traits in humans. Most theorists suppose that culture can be fruit-

fully studied by imagining it as a set of “cultural traits,” representing socially-learned

beliefs and behaviors held by individuals. Cultural evolution, analogous to genetic

evolution, occurs when the distribution of these traits changes over time. And as
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in genetic evolution, we can use mathematical modeling to study the evolutionary

mechanisms driving cultural systems. Following this approach, theorists study how

natural selection might favor various capacities for social learning, and how these

adaptations in turn affect the evolution of behavior and material technology in a

population.

The hypotheses produced by this large theoretical literature have received rela-

tively modest empirical testing, and most of that in controlled, experimental contexts.

Many studies have compared the behavior of subjects in multi-armed bandit or co-

operation games to models of various social learning strategies (McElreath et al.,

2005; Efferson et al., 2007a, 2008; McElreath et al., 2008; Mesoudi and O’Brien,

2008; Eriksson and Coultas, 2009; Rendell et al., 2011). Other task experiments have

progressively removed and replaced participants to create multi-generational “micro-

societies” that mimic the development of cultural or technological traditions (Baum

et al., 2004; Caldwell and Millen, 2008). These experiments reveal how various game

conditions affect how players learn from others, and how they transmit information

through time and space.

As is always the case with experimental studies, it is difficult to evaluate the

external validity of this results of these studies. With a few exceptions (Paciotti

and Hadley, 2003; Efferson et al., 2007a; Chudek et al., 2011), most such experi-

ments use university students, a highly unusual human subgroup (Henrich et al.,

2010). Naturalistic studies of real-world cultural phenomena provide a remedy, but

quantitative studies of this kind are rare. Most have successfully tested “static” hy-

potheses, investigating how ecological and ethnic contexts predict the distribution of

cultural beliefs and behaviors at a single point in time (Paciotti and Hadley, 2003;

McElreath, 2004; Henrich and Henrich, 2010; Henrich and Broesch, 2011). Absent
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high-resolution longitudinal data, researchers in this theoretical vein can rarely ob-

serve cultural change in real-time (Gravlee et al., 2009). Surely this is due, in part,

to the time costs of acquiring such data; evolutionary processes, even cultural ones,

are usually long-term and large-scale. Panel studies and historical records provide

the most promising avenue for analysis of modern cultural evolution, and in coming

years, large-scale data collection and digitization projects will allow access to massive

datasets of unprecedented resolution (e.g. Michel et al., 2011).

One major problem facing researchers of cultural evolution is the lack of a princi-

pled, quantitative method that can make sense of long-term trends in high-resolution

datasets. Consequently, we do not have a firm understanding of how the simplest

demographic and evolutionary processes (e.g. differential fertility, survival, individ-

ual learning) shape the relative abundance of particular ideas, behaviors or use of

technologies. The best example we know of that analyzes long-term cultural change

in an implicitly evolutionary framework is Hout et al.’s (2001) study of the fertil-

ity advantages enjoyed by conservative Protestants in the US over the course of the

twentieth century. Such demographic work reminds us that the history of a cultural

trait is shaped not only by the spread of information from person to person, but also

differential migration, birth and death rates.

We argue here that an evolutionary-demographic approach, similar to Hout et

al.’s, is the right one for general analyses of cultural evolution. Following the recent

work of evolutionary demographers (Coulson and Tuljapurkar, 2008; Ozgul et al.,

2009), we present an equation that decomposes the evolution of any mean charac-

ter into the contributions of various demographic processes - namely, reproductive

success, parent-offspring transmission, death, immigration, individual change, and

emigration. We assert that the aggregate of these processes completely describes all
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evolutionary change; hence, our method provides an exact description of evolution in

a cultural system. With sufficient data, the method may reveal which processes have

contributed most to the evolution of any character, which are relatively unimportant,

and which “directions” these processes tend to push.

Our argument proceeds as follows: first, we show mathematically that any change

in the mean phenotype of a population of organisms can be decomposed exactly into

terms corresponding to standard demographic processes, and argue that these pieces

have meaningful evolutionary interpretations. We then decompose the trajectory of

a cultural trait from simulated field data into the terms of our equation, which tells

us the relative importance of reproductive success, inheritance, death, migration,

and individual change to the long term evolution of a hypothetical cultural trait.

Decomposition patterns can also help us model mechanisms underlying a cultural

trend, which we demonstrate by fitting various demographic and learning models to

the field data to draw tentative conclusions about the major mechanisms underlying

the observed cultural evolution.

2.2 The RTDICE Decomposition

Between any two census times t and t + 1, the growth of a population of organisms

can be calculated using the famous demographer’s equation,

∆N = B −D + I − E (2.1)

which decomposes the observed change in population size into four measurable flux

quantities, representing the number of births, deaths, immigrants and emigrants, re-

spectively. Note that although each term clearly represents a distinct demographic
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process, we cannot consider them strictly in isolation; had the births been greater,

the deaths would undoubtedly be different, and so forth. Moreover, in many realistic

situations we can only register deaths among those who had been alive at time t,

leaving some intercensus events completely inaccessible. Nevertheless, this decom-

position equation gives a clear sense of both how much the population is changing

and, to some extent, why. Population growth due to births is different than growth

through immigration by the same amount, and distinguishing between them is vital.

Our analysis begins by asking whether a similar decomposition can be done for the

evolutionary trajectory of a phenotypic trait measured on the population.

In observing evolution, we require that within each census, each individual i pos-

sesses some observable phenotypic value, φi. This may represent their ethnicity,

age, height, athletic ability, income, religion, occupation, number of livestock owned,

political opinions, consumer preferences, or any other quantifiable trait whose pop-

ulation properties we care to track. Since we leave the phenotype unspecified, this

analysis applies to any species of organism, though we will focus here on tracking

human phenotypic trajectories. Given this goal, we seek a decomposition equation

for the intercensus change in the mean phenotype of the population, φ, analogous to

Equation 2.1. Below we present the derivation for one such equation, the RTDICE

decomposition.1

For the purpose of exposition, imagine we sum the phenotypic value of every

individual in a population at a particular time, such that φ =
∑
φi. We take it as self-

evident that this aggregate value can change in only five ways: births and immigrants

add their phenotypes, emigrants and deaths subtract theirs, and individuals who

1RTDICE stands for “reproduction, transmission, death, immigration, change, emigration,” six
categories that capture all evolution on the phenotypic distribution. Here “change” means inter-
census phenotypic change within individuals.
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remain in the population may change their phenotype between the two periods.2

Thus the aggregate phenotype at the next census, φ′, is given by

φ′ = φ+ φB − φD + φI + ρ− φE,

where φB is the sum of phenotypes of intercensus births (as measured at t + 1), φD

of intercensus deaths (using their phenotypes at time t), and likewise for immigrants

and emigrants. For those who survived from t to t+ 1, ρ is the sum of the differences

between their phenotypes at the two times. Using Equation 2.1, we can express the

population growth ratio (or finite rate of increase) as

G = N ′/N = 1 + b− d+ i− e

where b = B/N is the births between t and t + 1 per member of the population in

time t, and so forth for d, i, and e. Thus, we can write the change in the mean

phenotype of the population, ∆φ = φ
′ − φ, as

∆φ =
1

G

(
φ+ bφB − dφD + iφI + cρ− eφE − φ(1 + b− d+ i− e)

)
.

Let c = 1 − d − e represent proportion of the population from time t remaining at

time t + 1. Note that the term φB = φB/B represents the mean phenotype among

births, φD among deaths, and so on. Rearranging and simplifying gives

G∆φ = b(φB − φ)− d(φD − φ) + i(φI − φ) + cρ− e(φE − φ). (2.2)

2To be precise, in our analysis all individuals who join the population between time period t and
t+ 1 are classified as “births” if both their parents were in the population in time t, and otherwise
are “immigrants.” All individuals who were present in the population at time t and left it before
t + 1 are either deaths or emigrants depending on how they left. With only periodic census data,
individuals who both joined and left the population intercensus are invisible to our analysis.
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Equation 2.2 decomposes mean phenotypic change as the demographer’s equation

does for population change. The first term on the right, b(φB−φ), can be thought of

as the effect of births on mean phenotype, the next term, deaths, then immigration,

individual change, and emigration, respectively. Like the left side of the equation,

each term on the right is a product of a rate per capita and a difference. When

applied to census data, Equation 2.2 allows us to see how births, deaths, migration

and individual change separately3 affect the trajectory of mean phenotype.

Provided parent-offspring relationships are known, we can further decompose the

birth term in Equation 2.2 to distinguish the effect of differential reproductive success

of the parents (RS) from the deviation of the child phenotype (transmission bias). To

be specific, the term φB can be calculated either by dividing the aggregate of offspring

phenotypes by the number of offspring, or expressed using parent phenotypes and a

transmission bias term. If δk represents the difference between the phenotype of each

child k and the average phenotype of its parents, then the mean phenotype of births

is

φB =
1

bN

N∑ fi
2
φi +

1

B

B∑
δk = φR + δ.

where fi is the number of offspring of individual i.4 The term φR weights parent

phenotypes by their reproductive output, while δ captures the difference between

offspring and their midparents, on the average. This distinction provides us the full

RTDICE evolutionary decomposition,

G∆φ = b(φR − φ) + bδ − d(φD − φ) + i(φI − φ) + cρ− e(φE − φ). (2.3)

3As in the demographer’s equation, some intercensus events are often unknown, so these terms
are not truly “independent” in any real population. We clarify this point in the Discussion.

4The division by two is necessary for offspring with two parents.
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As before, the six right-side terms of Equation 2.3 decompose the change in mean

phenotype into the contributions of differential reproductive success, transmission

bias, death, immigration, individual change, and emigration, respectively.

It is worth recognizing that most of the terms in Equation 2.3 can be expressed

as covariances (e.g. d(φD − φ) = cov(d, φ)). This fact immediately reveals the

conceptual connection between our demographic decomposition of evolution and the

Price equation (Price, 1970).5

Equation 2.3 is true for any measurable character for any population of a sexually

reproducing species (and is easily modified for asexual or unisex populations), and

provides insight into the nature of the evolutionary forces at work. A large magnitude

RS term, for example, may indicate the operation of fecundity or sexual selection.

The mortality term could be large or small due to viability selection on the pheno-

type’s distribution. In a genetic context, transmission bias may indicate mutation or

meiotic drive, while individual change gives us knowledge of the role of ontogeny. For

culturally-transmitted phenotypes, both the transmission bias and individual change

terms may indicate the presence of learning biases. Emigration and immigration have

less connection to Darwinian forces, but may indicate the importance of dispersal or

source-sink effects. In short, provided we have individual-level data, we can use evo-

lutionary decomposition to profile important trends within data straight away (Table

2.1 & 2.2).

5Price’s famous theorem shows that, in the notation used above, G∆φ = cov(w, φ) +Gδ, where
w gives the total number of “descendants” produced by an individual. This is the first and most
general evolutionary decomposition equation, and is the starting place for what Sean Rice calls the
“algebra of evolution” (Rice, 2004). If we ignore migration and treat surviving individuals as their
own descendants, we recover Price’s theorem from our Equation 2.3.
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ID Census 1 φi Census 2 φi Parents
Edward 1 emigrated

Lyn 0 died
Pat 1 0

Susan 1 0
Bob 0 0
Alex 1 Edward, Lyn
Jeff 0 Edward, Susan

Mike 0 Bob, Pat
Andrew 1 (immigrant)

Ian 1 Edward, Susan
Mean Phenotype: 0.6 0.375

Table 2.1: A hypothetical dataset with individual-level census data for two time
periods, measuring a binary phenotype φi (note that φi can be discrete or continuous
in this analysis). Jeff, Mike, and Ian are born intercensus. Provided we can identify
individuals across multiple time periods and also establish parentage, we can apply
Equation 2.3 to calculate the decomposition terms for the change in mean phenotype
in the population (Table 2).

Term from Equation 2.3 Effect Calculation

Reproductive Success 0.12 b(φR − φ)

Transmission Bias -0.20 bδ

Death 0.12 −d(φD − φ)

Immigration 0.08 i(φI − φ)
Individual Change -0.40 cρ

Emigration -0.08 −e(φE − φ)

Weighted Mean Change 1.6×−0.225 G∆φ

Table 2.2: Feeding the data from table 1 into Equation 2.3, we decompose the evolu-
tionary change of -0.225 into the six terms on the right in the above table. Emigra-
tion and immigration effectively cancel each other out, and though individuals with
a phenotype value of 1 had more children (positive RS term) and died less (positive
mortality term), this is more than offset by the fact their children tend to be phe-
notype 0’s (negative transmission bias). That, coupled with a unanimous change to
phenotype 0 among the three survivors from time t, causes the population mean to
decrease by 22.5 percentage points. Because the decomposed terms must sum to the
observed change under all circumstances, we can ensure the calculations are correct.
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2.3 An Island Simulation: The Rise of Snoobism

One application of this decomposition analysis is assessing the practical importance

of different evolutionary forces. In human cultural evolution, researchers often dis-

cuss how beliefs and behaviors can successfully diffuse in multiple ways; vertically,

through stable inheritance from parents to offspring, or horizontally/obliquely within

a social network (Richerson and Boyd, 2005). As such, when viewing the prevalence

of a particular trait over time, we wish to know exactly how much of its trajec-

tory can be attributed to the relative reproductive success of its practitioners, how

much to relative horizontal or oblique adoption, and how much to relative migration

(e.g. Stark, 1996; Hout et al., 2001). Because contrasting evolutionary forces enter

Equation 2.3 through different terms, we can directly and precisely compare their

relative consequences if we have the right data.

To demonstrate the utility of evolutionary decomposition in profiling important

trends in cultural change, we analyze census data generated by an agent-based sim-

ulator in the R language, SnoobSim. Simulations can easily descend into unrealistic

omniscience in a virtual world of contrived assumptions. To avoid this problem, we

proceed with two rules: first, everything in the analyzed data must be realistic for

researchers to collect in the field, and second, the conclusions drawn must rest purely

on the recorded dataset itself, rather than the algorithms that produced the data.

As in real life, the goal is to establish exactly how far we can get without know-

ing the “rules” of the system; it is a feature of our analysis that we can gain much

new knowledge about the evolutionary processes behind observed dynamics without

knowing their true nature.

In our simulation, a population of around 1,000 humans arrives in a resource-

rich environment akin to Hawaii or New Zealand, and begins growing according to
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realistic daily mortality and reproduction schedules.6 Every five years, a full census of

the population is collected, recording names, parentage, age, and several phenotypic

measures. After 270 years, the population now numbers about 8,000 individuals

and 54 such record tables have been collected, allowing us an extraordinarily high-

resolution picture of the population’s evolution.

Among the settlers, a minority group adheres to a culturally-transmitted world-

view we call Snoobism. Among other aspects of the belief system, Snoob norms

celebrate marrying other Snoobs, having large families of Snoob children, and living

a safe, healthy and frugal Snoob lifestyle. Purely for simplicity, we treat this as a

discrete, binary trait individuals may acquire or lose in the course of their lifetimes.

Encompassing around a fifth of the original settlers, Snoobism spreads to nearly every

member of the population by the final census, twelve generations later.

Following Ozgul, et al. (2009), we contend that evolutionary decomposition can

provide a uniquely straightforward understanding of this trend. If we plug the records

of each of the 54 censuses into the RTDICE equation, we produce decomposition

terms for each of the 53 values of ∆φ, as in Table 2.2. This information is collected

and organized in Figure 2.1.

Displaying each of the RTDICE magnitudes and directions graphically over time

(Figure 1a) and in summary (Figure 1b) tells us immediately which of the decompo-

sition terms played the largest role in driving the observed cultural trend. For nearly

three centuries, RS and mortality have consistently positive demographic effects on

Snoobism, while parent-offspring transmission bias is small and apparently nondirec-

tional. Note that from the RTDICE decomposition itself we cannot tell if this RS

6Individuals within the population reproduce, age and die at age-specific rates comparable to real
human populations. For the technical details of the simulator processes, see the chapter appendix.
The census dataset analyzed here, and R code for SnoobSim are available on the authors’ websites.
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Figure 2.1: (a) The population frequency of a binary cultural trait, Snoobism, ob-
served over time, superimposed with the nonzero decomposition terms from the RT-
DICE equation. Bars stacked above the Snoob frequency line represent positive
magnitudes, and stacked below it, negative. Since each bar represents one of the
terms of Equation 2.3 (divided by G), their sum steers the direction of the frequency
line. For clarity, the bars are exaggerated to the scale in (b), which shows means, 5th,
25th, 75th and 95th percentiles of the observed annual decomposition magnitudes for
each term.

effect results from differences in birth spacing, length of reproductive career, success

in acquiring mates, or some combination of these. Whatever the case, though, it is

clear that on average Snoobs have more children than non-Snoobs, and that this is

the most important trend in the evolution of Snoobism in the population over time.

The strong, consistently positive effects from RS and mortality are not obvious

from the frequency line itself, which for a full century shows little change in the

prevalence of Snoobism in the population. The decomposition terms indicate the

reason: despite the fact the average Snoob has more children and is less likely to

die than a non-Snoob, many more individuals abandon Snoobism than adopt it,

maintaining Snoob frequency at around 20-25%. Only once this effect begins to
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vanish, 100 years after the settlement’s founding, does Snoobism increase in frequency,

and the last 15 census records all indicate a positive conversion balance that rivals

the RS and mortality effects and facilitates Snoobism’s eventual dominance.

As with differential fertility and mortality, this reversal is consistent with many

hypotheses. For example, it could be that an environmental or social change occurred

some time between the years 130 and 180, after which Snoobism appeared to be an

inherently more attractive lifestyle. Perhaps Snoobs developed a new institution for

promoting conversion or preventing apostasy, or became politically dominant over

non-Snoobs. The trend is also consistent with a social learning hypothesis. Suppose,

for example, that individuals tend to conform to the beliefs of the majority; then

we would expect the conversion balance to covary with φ. In our view, evolutionary

decomposition is most valuable because such revealed trends can motivate targeted

statistical modeling, which in turn can make predictions about future change.

From the decomposition figures, we can also clearly see which processes don’t

have large impact on the evolutionary trajectory. If we were measuring traits that

are mostly transmitted horizontally within cohorts, such as musical preferences or

use of a new technology, we expect to see a large transmission bias between parents

and children. This will also occur when measuring a life history characteristic like

body weight or hunting skill, and as we discuss later this may even motivate a more

sophisticated decomposition equation. The small bars of the transmission bias term

in Figure 1 show that this is not true for one’s Snoob status - children, when first

censused, reliably hold the traits of their parents, Snoob or non-Snoob.

It should be noted that the apparent lack of a strong transmission bias does not

render the process of character transmission unimportant. The fact that offspring

tend to resemble their parents on average suggests that the Snoob trait is somehow
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heritable, and this heritability allows differential fertility and survival to affect the

population mean. Still, Figure 2.1 clearly shows that transmission bias in and of itself

appears to have little direct effect on the rise of Snoobism, while the mechanisms

behind RS, mortality and individual change all play determining roles.

2.4 Comparing Mechanisms of Cultural Change

With decomposed trends now available, researchers can make informed forecasts

about future change, compare parallel trends for other traits or in other populations,

or design more specific goals for new rounds of data collection. The most useful next

step, in our opinion, is generating hypotheses about why these decomposition terms

appear as they do, and developing and testing models of the mechanisms underlying

these patterns.

For demonstration, we will focus here on the individual change term, with similar

analyses of RS and mortality in the chapter appendix. Among those individuals who

appear in multiple censuses, we wish to know what effectively predicts their Snoob

status, 0 or 1, at time t+1 given the information available at time t. If we consider an

individual i’s Snoob status in the next census, φi,t+1, as a binomial random variable,

possible mechanisms can be formalized as conditional probabilities of becoming a

Snoob. To be precise, we will assume individuals retain their current Snoob status

with probability (1−L) and update with probability L, and using some learning rule

M . Then each model takes the form Pr(φi,t+1 = 1) = LM + (1−L)φi,t. As discussed

above, the three-century-long swing in direction of the individual change term seems

to point to several different, mutually-inclusive mechanisms:

Conformist social learning. Under this mechanism, individuals tend to abandon

Snoobism when it is unpopular, but become Snoobs when it is common. Beginning
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with Boyd and Richerson’s 1985 model, the conformist learning bias can be expressed

in the form M = φt + 2(β − 1)(2φt − 1)φt(1 − φt). Parameter β represents the

strength of conformity; when it is 1, updating is frequency-dependent but unbiased,

and when it is greater than 1, updating is biased towards conformity. More general,

but more complicated, versions of this equation have been developed, allowing the

conformity threshold to vary from a simple majority (Bowles, 2006) and the strength

of conformity to vary without bound (McElreath et al., 2008).

Individual learning/density dependence. As the population is steadily growing in

the simulator, the observed swing in the individual change term is also consistent with

a simple density-dependence. Under such a mechanism, the probability of becoming

or remaining a Snoob increases with the island’s population size, perhaps because non-

confrontational Snoob norms are more attractive in crowded environments. Thus, for

population size Nt, the updating model may be written as M = logit−1(α + βNt).

Individual learning/environmental change. It is also plausible that individuals

adopt or maintain Snoobism purely as a consequence of “environmental” decision-

making, regardless of current population size or Snoob prevalence. Shocks due to

technological ratcheting or climatological shifts may make Snoobism, with its thrifty

norms and informal channels of social support, a more appealing lifestyle. The ob-

served swing in the individual change term, then, may be consequent from a changing

material environment alone. Absent any form of economic or ecological data, we can

still model this using simple time series models, e.g. M = logit−1(α+ βt), which can

account for unobserved environmental shifts.

Of course, in real populations such processes are probably all in effect to vary-

ing degrees, so more complex updating models that incorporate mixtures of these

simple mechanisms should be included as well. Using information-theoretic model
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comparison techniques, we fit a variety of such models, simple and complex, to the

individual-level phenotypic data using maximum likelihood, and compared them us-

ing the Akaike Information Criterion and Schwartz Criterion (also called BIC). Table

2.3 shows the four best-performing models, all conformist learning models. The

dominance of such models is most consistent with a pure conformist social learning

hypothesis, at least among the few hypotheses tested above.7 The two other major

drivers of Snoobism, RS and mortality, were analyzed in a similar fashion in the

chapter appendix. Motivated by patterns in the decomposition terms, hypotheses

about driving mechanisms of cultural evolution can be drawn from the rich theoreti-

cal literature and, using these methods, fitted to realistic field data.

Updating Model, M Conformity Coefficient AICc Weight BIC Weight

φt + 2(β − 1)(2φt − 1)φt(1− φt) 1.366 (1.322, 1.409) 0.4049 0.5010

φ
β

t /(φ
β

t + (1− φt)β) 1.374 (1.318, 1.429) 0.4019 0.4972

φt + 2(β − 1)(2φt − 2k)φt(1− φt) 1.360 (1.311, 1.408) 0.1743 0.0017

logit−1(α+ βφt) 6.389 (6.121, 6.658) 0.0106 0.0001

Table 2.3: Top four models among the thirteen fitted to the simulated census data,
as measured by AICc and BIC score (see chapter appendix for full model list). Each
model M of the thirteen is embedded in the equation p = L(M)+(1−L)(φi,t), where
p describes the conditional probability an individual will be a Snoob in the next
census, per φi,t+1 ∼ Binomial(1, p). The top four are all social learning models, each
with a conformity coefficient β of comparable meaning. The first model above comes
from Boyd and Richerson (1985), while the second and third come from McElreath,
et al. (2008) and Bowles (2004), respectively.

7Unsurprisingly, this was the learning model used by the agents in SnoobSim.
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2.5 Discussion

It is important to emphasize what the preceding evolutionary decomposition analysis

gives us compared to standard demographic metrics. Birth and death rates could

be more precisely compared using the total fertility rate, life expectancy at birth, or

other common demographic measures. But by themselves these tools lack a direct

mathematical connection to change in mean phenotype in the population, the most

common way we measure evolution. As a result, it is difficult to assess exactly

how much mortality affects the population distribution of phenotype, versus RS,

immigration, and so forth.

These answers are readily available from decomposition of mean phenotypic change,

regardless of the particularities of the system. Phenotypes may be discrete values like

Snoob status, or continuous, like body weight. Because the decomposition equation

is derived from basic facts about the population and data structure, its value depends

not in the realism of its assumptions (which we contend are nearer to axioms), but

rather in the meanings we can find in its terms, once strictly defined. In doing so,

three important qualifications must be stressed.

First, the terms in the decomposition equation segregate but do not correspond ex-

actly to evolutionary processes like sexual selection or biased social learning. Snoobs

may enjoy higher RS because of something inherent in practicing Snoobism, because

the trait co-occurs with some other trait like income or age, or simply due to chance.

The decomposition terms, most of which are covariances between phenotype and

demographic outcomes, are really nothing more that dimensionalized correlations.

Following Rice (2004) and Henrich et al. (2008), we feel that terms like “selection”

or “fitness” should only be invoked when a causal pathway between phenotype and

outcome can be supported, and even then any empirical decomposition term will be
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a combination of both causal and noncausal associations.

Second, the RTDICE decomposition is only one possible partitioning of the ob-

served phenotypic trajectory, and potentially not a very useful one. For example,

the differential mortality between Snoobs and non-Snoobs is partially a consequence

of the fact Snoobs tend to be younger, which is a consequence of their differential

RS. We can use logistic models of mortality to establish that Snoob status predicts

mortality outcomes even among those of the same age (see chapter appendix), but

the RTDICE mortality term cannot isolate this effect from the covariance between

Snoobism and age. If we expect structuring variables like age, gender, ethnic group,

or location in a metapopulation will play an important role in the evolution of a

particular phenotypic character, we should build this directly into the decomposition

equation as appropriate for the dataset and the situation (Coulson and Tuljapurkar,

2008).

We must also modify the equation if the categories we place people within are in-

appropriate, e.g. the intercensus period spans multiple generations, parentage cannot

be identified, or we wish to distinguish immigrants from different sources. Note that

we need no special consideration of whether the parent of record is a genetic parent,

and if appropriate we may specify other inheritance relationships like “teacher” or

“older sibling”; the evolutionary consequences of the observed relationship are an

empirical matter.

The third qualification is that, without records of each demographic event as it

happened, the terms in a decomposition equation should not be viewed as strictly

independent. The effects of intercensus events are inferred from comparing the two

census records, but some information is necessarily lost, such as individual change

shortly before death or after birth.
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In fact, if the population experiences demographic events in discrete seasons, the

terms can lose their distinctiveness altogether. Imagine, for example, a population

of individuals experience heavy mortality in each winter, selecting out individuals

with smaller phenotypes (e.g. weight, beak length). Then, in the summer, the

survivors give birth. Applying RTDICE to annual census records would show a

strong covariance between RS and phenotype even if phenotype plays no important

role in mating or reproducing, simply because of the preceeding mortality event.

We suspect that for large populations in which such demographic events do not

follow a strict order, the distortions are minimal. We can never properly rid our-

selves of the problem of order, however, since every death removes the possibility of

another birth, emigration event, etc. For populations which do go through a distinct

schedule of demographic events, one possible solution is to construct ordered-event

decomposition equations.

As in Coulson and Tuljapurkar (2008), the RTDICE equation only holds exactly

for full census data without error. We realize that probably no dataset of the size

and quality comparable to that simulated here exists in reality; real datasets nearly

always contain just a sample of the full population and some amount of measurement

error. Under circumstances of incomplete data, the terms of the RTDICE equation

cannot simply be computed but must instead be estimated by statistical analysis.

We anticipate that future research will elucidate the best statistical methods for

estimating these terms.

Despite these limitations, we foresee a wide variety of applications for the de-

composition approach in both evolutionary theory and studying human history. The

decomposition method provides unique advantages in profiling trends, motivating

and testing hypotheses, and assisting prediction. By applying basic demographic
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bookkeeping to high-resolution records of cultural change over time, we are also able

to demonstrate conclusively the Darwinian nature of cultural transmission.

2.6 Appendix to Chapter 2

All models below were coded in R using variables extracted from the 54 SnoobSim

census records. Models were fit by maximum likelihood using the function mle2 in

Ben Bolker’s bbmle package (cran.r-project.org/), with the default BFGS algorithm.

2.6.1 Extended Analysis of Individual Change

The “individual change” decomposition bars indicate that initially the balance of

change is negative and large in magnitude. As the frequency of Snoobs approaches

50%, though, this effect becomes smaller and smaller, and as Snoobs move towards

fixation the effect reverses and the balance of converts is now strongly positive, at

times rivaling RS in magnitude.

An important thing to keep in mind when reading the individual change bars

is that they represent only the average phenotypic cange across individuals; some

individuals became Snoobs in the first few decades, but more apostatised to non-

Snoob.

Our outcome variable here is “will be a Snoob” in the next census (φi,t+1), modeled

by current Snoob status and other properties of individuals and the population.

Because we have a binary outcome variable, we use a binomial model with various

parameterizations of p. A standard way to express this probability is the form p =

LM + (1− L)φi,t, so individuals update with probability L and retain their current

status with probability (1 − L). Strictly speaking, this sequence of first updating,
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then (potentially) changing phenotype implied by this model is quite artificial for

real human learning. However, it is interesting to consider human cultural change as

if it proceeded in this fashion, because the updating rule can incorporate a variety

of hypothesized mechanisms for comparison using information criteria.

The simplest model is a constant Snoob conversion probability for all individuals

M0 = α.

In other words, individuals update with probability L, and of those we expect fraction

α take Snoobism as their phenotype.

Conformist learning is parameterized in four, very similar, ways. The model

φt+D(2φt−1)φt(1−φt) is from Boyd and Richerson (1985). Parameter D represents

the strength of conformity; D = 0 indicates no conformity and unbiased, frequency-

dependent learning. If D > 0, conformity will increasingly dominate the probability

of becoming a Snoob, while D < 0 implies non-conformity (you are more likely to

choose the opposite of the majority’s trait). Bowles Bowles (2006) modifies this by

creating an explicit parameter for the threshold, allowing it to vary from 0.5, so which

we could write as φt + D(2φt − 2k)φt(1 − φt). The conformity model in McElreath,

et al. (McElreath et al., 2008)8 expresses a similar idea, using the model

M1 =
φ
β

t

φ
β

t + (1− φt)β

where β > 1 represents conformity. Because the Boyd and Richerson model is actually

Taylor series approximation of this more general model when β is close to 1 and φt

is near 0.5, we may sensibly write all three models in a common notation. Hence, in

8The basic form of this model was suggested to McElreath et al. by Sam Bowles (Richard
McElreath, personal communication).
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our analysis, we include the 1985 model as

M2 = φt + 2(β − 1)(2φt − 1),

and the 2004 model as

M3 = φt + 2(β − 1)(2φt − 2k).

Another sensible way to parameterize conformity is by using a logit link function,

such that

M4 = logit−1(α + βφt) =
exp(α + βφt)

1 + exp(α + βφt)
.

Two density-dependent models, one with a quadratic effect,

M5 = logit−1(α + βNt),

M6 = logit−1(α + β1Nt + β2N
2
t ).

Model M6 used population sizes coded in standard units, to aid the maximum likeli-

hood algorithm. Two time series models, one with a quadratic effect,

M7 = logit−1(α + βt),

M8 = logit−1(α + β1t+ β2t
2).

Oscillatory models of time and population were also used:

M9 = logit−1(α + β1 sin(β2t)),
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M10 = logit−1(α + β1 sin(β2Nt)).

Various combinations were also included. Including time and population size,

M11 = logit−1(α + β1t+ β2Nt).

Including population Snoob frequency, individual age in years (centered on mean),

and gender (coded as a 1/0 variable “male”),

M12 = logit−1(α + β1φt + β2male + β3age).

The final model included adds time to model M12,

M13 = logit−1(α + β1φt + β2male + β3age + β4t).

Running a model comparison ranks these thirteen models according to Table 2.4.

Schwartz criterion ranks (BIC) are nearly identical to AICc ranks, nominating models

M1 and M2 as the best-performing. The constant model, M0, performs worst among

the model set, but conformity models completely dominate the model weighting.

This would indicate that the best out-of-sample predictive models as identified by

information theory are purely social learning models using φt, and do not improve

by adding other population-level covariates like population size, or individual-level

variables like gender or age.

Because of the functional similarity between M1, M2, and M3, the parameter

estimates are nearly identical, and only M1 will be discussed. The conformity coef-

ficient (with standard error) was estimated as 1.374 (0.028), which, being above 1,

is evidence towards conformist biased updating. The maximum-likelihood estimate
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Model k AICc weight BIC weight ∆ AICc ∆ BIC
M2 2 40.49% 50.10% <0.01 <0.01
M1 2 40.19% 49.72% 0.02 0.02
M3 3 17.44% 0.17% 1.69 11.42
M4 3 1.06% 0.01% 7.28 17.02
M12 5 0.58% <0.01% 8.48 37.68
M13 6 0.24% <0.01% 10.27 49.21
M6 4 <0.01% <0.01% 67.35 86.82
M8 4 <0.01% <0.01% 102.91 122.38
M7 3 <0.01% <0.01% 107.40 117.14
M5 3 <0.01% <0.01% 921.84 931.57
M11 4 <0.01% <0.01% 1070.58 1090.05
M10 4 <0.01% <0.01% 2007.97 2027.44
M9 4 <0.01% <0.01% 2254.17 2273.64
M0 1 <0.01% <0.01% 133107.95 133098.21

Table 2.4: Individual change updating models, by AICc rank, with AICc and BIC
scores in terms of the top model, M2, and model weights (all to two decimal places).
Both the Akaike Information Criterion and the Schwartz Criterion (BIC) rank the
performance of each model by assigning penalties to its MLE likelihood value; AIC
and AICc penalize by the number of parameters, k, in a given model.

for the intercensus updating probability, L, was 0.100 (0.002), meaning that under

this model about 10% of the population updates every five years, while 90% do not

update at all. It is worth noting these estimates are quite sensible per what the

SnoobSim software is actually doing (next section).

Individual Change - What SnoobSim is Actually Doing

In the simulation, each day, some fraction of the population decides they will “update”

their Snoob status. To be precise, each individual updates daily with probability

0.00006. If an individual decides to update, they then collect a random sample of

100 people in the population, and uses this information to decide to change their

Snoob status or stay where they are. Note that once an individual decides to update,

their previous Snoob status becomes irrelevant. Each individual takes their particular
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Figure 2.2: Fitted model M1 plotted over the observed proportions of individuals
who will switch to or remain Snoobs intercensus, on the population Snoob frequency
for the first 53 censuses. Maximum likelihood estimates (dashed line) and 95% HPDI
intervals (solid lines) for the Bernoulli probability of becoming a Snoob, p, show a
strong nonlinear association between individual change and φt.

sample of 100 and adopts Snoobism with probability given by the code:

prob.converting.to.snoob <-

(sample.frq^conformity.bias.snoob)/

(sample.frq^conformity.bias.snoob + (1-sample.frq)^conformity.bias.snoob)

In other words, learners used exactly the same mechanism as M1, except on the

Snoob frequency among the 100 they randomly sampled, rather than the population

frequency. No surprise, then, that models with this functional form came in first

in the model comparison. The simulation parameter conformity.bias.snoob was

set to 1.3 (compare against the MLE of β above), and with a daily probability of

updating set to 0.00006, we expect proportion 1− (1− 0.00006)365×5 = 0.104 of the

population to update (compare to the MLE of L, above). We should not expect real

census data to nominate such simple models, but the utility of information-theoretic

model comparison remains the same nonetheless.
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2.6.2 Analysis of RS Term

The strong, consistently positive effect of RS in the decomposition indicates that

Snoobs have more children than non-Snoobs, on the average. This could be causal,

meaning Snoobism itself may have some effect on one’s desire or ability to mate, or

it could be a consequence of Snoobism covarying with some other trait. For example,

if people tend to become Snoobs during their reproductive careers, only to abandon

it later in life, we would see a consistent, positive effect in the decomposition. Or,

perhaps Snoobism is a sex-specific trait and there are fewer of that gender in the

population (so they must have higher mean RS).

Hence, it is premature to say Snoobism is “under selection” without conclusive

evidence against confounding variables. This is difficult to impossible in observational

contexts, like this one, but statistical control can at least tell us if the RS advantage

of Snoobs remains when comparing Snoobs and non-Snoobs of the same gender and

age.

Our outcome variable is the number of kids an individual sires (if they are of

reproductive age) have during the next intercensus period, which in our data varies

between 0 and 8 (women are constrained to about 5 or 6 children in a five-year

intercensus period), fi,t+1. We have some flexibility with count data, so we have

chosen to compare models of the outcome variable using three possible probability

distributions: geometric, Poisson, and zero-inflated Poisson. For the Poisson family,

λ is modeled by an exponential link function (λ = exp(M), for some model M), while

for the geometric models, the Bernoulli probability of success p is modeled generically

by logit link function (p = logit−1(M)).

Altogether, twelve models of the expected number of intercensus children were
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compared. Note that all uses of age center the variable on its mean.

M0 = β0

M1 = β0 + β1age

M2 = β0 + β1age + β2(age)2

M3 = β0 + β1age + β2(age)2 + β3φi,t

M4 = β0 + β1age + β2(age)2 + β3φi,t + β4male

M5 = (1−Nt/K)(β0 + β1age + β2(age)2 + β3φi,t + β4male)

M6 = exp(−K ∗Nt)(β0 + β1age + β2(age)2 + β3φi,t + β4male)

M7 = β0 + β1age + β2φt

M8 = β0 + β1age + β2(age)2 + β3φt

M9 = β0 + β1age + β2(age)2 + β3φi,t + β4φt

M10 = β0 + β1age + β2(age)2 + β3φi,t + β4male + β5φt

M11 = β0 + β1age + β2(age)2 + β3φi,t + β4male + β5(male× φi,t)

M12 = β0 + β1age + β2(age)2 + β3φi,t + β4male + β5φt + β6(male× φi,t)

Since each of these 12 models can be placed within a Poisson, geometric, or zero-

inflated Poisson (ZIP) distribution, a total of 36 distinct models are fitted separately

to the data and compared for out-of-sample predictive accuracy using AICc and BIC

(Table 2.6).
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The top models, M10 and M12, both include age, gender and Snoob status, and

differ only in an interaction effect between male and Snoob status. No density-

dependent or frequency-dependent models performed as well. Also, according to

the model comparison, the zero-inflated Poisson distribution is the best-performing

stochastic wrapper around these two models, as opposed to the geometric distribution

or the Poisson, which are vastly outperformed.

Estimates and confidence intervals for M10 are presented in table 2.5, with MLE-

fitted lines plotted in Figure 2.3. It is clear from the estimates and figure that

Snoobism remains an excellent predictor of reproductive output after accounting for

age and gender. This allows us to rule out the possibility that the decomposition

results for RS were merely a consequence of chance associations between Snoobism

and age or gender, and points to the possibility Snoobism is under some form of

fecundity or sexual selection.

Parameter Estimate Std. Error 2.50% 97.50%
β0 -0.878 0.024 -0.924 -0.831
β1 -0.006 <0.001 -0.007 -0.005
β2 -0.002 <0.001 -0.003 -0.002
β3 0.681 0.017 0.647 0.714
β4 0.120 0.013 0.093 0.147
β5 0.244 0.033 0.179 0.309
α 0.357 0.006 0.3451 0.369

Table 2.5: Parameter estimates for the zero-inflated Poisson version of model M10.
The second-placed model’s fitted values are nearly identical to these but with an
additional interaction term for Male snoobs of -0.043 (0.030), MLE and SE. Parameter
α estimates the frequency an outcome of 0 will be drawn from the distribution, beyond
what would be expected by the Poisson model.
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Model Distribution k AICc weight BIC weight ∆ AICc ∆ BIC
M10 ZIP 7 72.35% 99.63% 0.00 0.00
M12 ZIP 8 27.65% 0.37% 1.92 11.17
M12 Geom. 7 0.00% 0.00% 28.19 28.19
M10 Geom. 6 0.00% 0.00% 36.98 27.73
M4 ZIP 6 0.00% 0.00% 52.23 42.98
M11 ZIP 7 0.00% 0.00% 53.70 53.70
M11 Geom. 6 0.00% 0.00% 72.55 63.30
M4 Geom. 5 0.00% 0.00% 80.50 62.00
M3 Geom. 4 0.00% 0.00% 98.63 70.87
M3 ZIP 5 0.00% 0.00% 129.07 110.57
M8 Geom. 4 0.00% 0.00% 1553.27 1525.52
M8 ZIP 5 0.00% 0.00% 1699.65 1681.15
M12 Poisson 7 0.00% 0.00% 1779.76 1779.76
M10 Poisson 6 0.00% 0.00% 1795.46 1786.21

Table 2.6: Models of reproductive success, by AICc and BIC rankings to two decimal
places. Models can appear more than once in the rankings because they are embed-
ded in different stochastic nodes: the second-ranked model is M12 in a zero-inflated
Poisson distribution (ZIP), while the third-ranked model is M12 in a geometric dis-
tribution. Of the 36 models tested (three stochastic distributions for each of twelve
structural models), only the top 14 are shown.
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Reproductive Success: What SnoobSim is Actually Doing

Women become pregnant probabilistically according to an age-specific fertility sched-

ule identical to that of a realistic population (US women c. 2005). From the ages of

15 to 50, women reference a daily probability of conception given by

daily.pr.conception <- (1-(1/(1+exp(alpha + beta1*snoob))))

Parameter alpha is set by the fertility schedule, and the effect of being a Snoob is

for this run is beta1=0.8, exaggerating a Snoob’s age-specific fertility schedule and

increasing the daily probability she will become pregnant. If a woman conceives, she

will then choose a male as the father.

Men are promiscuous and can be chosen by multiple women (one lucky man

fathered a record 8 kids in 5 years with several different women). Women will continue

to mate with the same man until he becomes unavailable due to advanced age (i.e.

greater than 60 years old) or death.

According to the simulator parameters, women almost always choose males who

are like them with respect to Snoob status. Men enjoy no specific fertility schedule,

but because of this positive assortment we can expect Snoob men will have different

fertility schedules than nonSnoob men. However, a man’s age (or any other traits

for that matter) has nothing to do with his being selected, so we should not expect

a male’s age-specific fertility to be like a female’s. Nevertheless, mechanistically

Snoobism has a direct impact on one’s RS, and this effect cannot be controlled out

by including other covariates. As far as the simulation is concerned, Snoobism is

indeed under strong fertility selection.
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2.6.3 Analysis of Mortality Term

According to the RTDICE decomposition, non-Snoobs die more than Snoobs, caus-

ing Snoobism to consistently increase by a relatively small amount. As with positive

RS, this could be a result of a behavior consequent from Snoobism itself, in which

case we could say the positive mortality effect is “viability selection”. But, alterna-

tively, this effect could be due to an association between Snoobism and some other

trait which confers differential survival. For example, if young people are more at-

tracted to Snoobism, while seniors tend to dismiss it as a folly of youth, Snoobism

would negatively covary with mortality despite having no mechanistic effect on one’s

mortality.

Our goal, then, is to establish whether Snoob status still helps predict mortality

outcomes even after accounting for age, gender, and other relevant life history char-

acteristics. This motivates a number of mortality models. Because we can work with

individual-level data for multiple time periods, we specifically wish to model whether

in the next intercensus period an individual will die (di,t+1 = 1) or not (di,t+1 = 0),

using their gender, age, and Snoob status, and possibly properties of the population.

This outcome is modeled as a binomial random variable, or di,t+1 ∼ Binomial(1, p),

with p taking the form of an inverse logit link of some model M .

A total of six models were included in this analysis:

M0 = α

M1 = α + β1age

M2 = α + β1age + β2(age)2



2.6. Appendix to Chapter 2 63

M3 = α + β1age + β2(age)2 + β3male

M4 = α + β1age + β2(age)2 + β3male + β4φi,t

M5 = α + β1age + β2(age)2 + β3male + β4φi,t + β5φt

Because long-lived humans record many zeros for this variable until their eventual

death, we also considered a zero-inflated binomial stochastic node with the same logit-

linked models of p, for a total of 12 models. Comparing these as before produces Table

2.7, which shows one clear winner: M4 for the binomial distribution. In other words,

the information criteria suggest that the best way to predict one’s mortality status

is by knowing their age, gender, Snoob status together. Plotting this fitted model on

proportions of individuals who die at particular ages produces Figure 2.4. The M4

are not perfect, but correctly identify the different mortality experiences across the

lifetime for Snoob and non-Snoob (Table 2.8). As with RS, we can show clearly that

Snoobism remains a useful predictor even accounting for age and gender, which may

indicate that viability selection is in play in the mortality term in the decomposition.

Mortality - What SnoobSim is Actually Doing

Snoobs reference a different mortality schedule in the simulation specific to their age

and gender. The baseline mortality schedule for non-Snoobs is the estimated US

mortality schedule c. 2005. To be specific, the daily probability of death for each

individual is calculated via:

daily.pr.death <- (1-(1/(1+exp(alpha + mortality.bias.male*male

+ mortality.bias.snoob*snoob))))

The parameter alpha represents the mortality schedule, but can be modified by

both gender and Snoob status. For this simulation, mortality.bias.snoob was set
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Model Distribution k AICc weight BIC weight ∆ AICc ∆ BIC
M4 binomial 5 100.00% 99.99% 0.00 0.00
M5 ZIB 7 0.00% 0.00% 20.41 39.87
M5 binomial 6 0.00% 0.00% 21.20 30.94
M1 binomial 2 0.00% 0.01% 47.62 18.41
M3 binomial 4 0.00% 0.00% 49.82 40.08
M4 ZIB 6 0.00% 0.00% 76.98 86.71
M2 binomial 3 0.00% 0.00% 122.52 103.05
M2 ZIB 4 0.00% 0.00% 309.24 299.50
M3 ZIB 5 0.00% 0.00% 717.33 717.33
M1 ZIB 3 0.00% 0.00% 1349.15 1329.68
M0 binomial 1 0.00% 0.00% 15489.56 15450.62
M0 ZIB 2 0.00% 0.00% 15491.56 15462.36

Table 2.7: Model rankings for mortality models, with number of parameters (k).
To two decimal places, model M4 completely dominates the information criterion
weightings.

Parameter Estimate Std. Error 2.50% 97.50%
α 4.673 0.040 4.595 4.750
β1 -0.036 0.001 -0.039 -0.034
β2 -0.001 0.000 -0.001 -0.001
β3 -0.088 0.034 -0.155 -0.021
β4 0.559 0.034 0.492 0.627

Table 2.8: Parameter estimates for model M4 in a binomial model of mortality. Snoob
status substantially reduces the probability one will die at any given age or gender.
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to -0.5, meaning Snoobs die less often, and and the mortality.bias.male was 0.3,

meaning males die more often. As a consequence, Snoobs should always die less for

any given age and gender, and so the effects of this “viability selection” should show

up in models that account for Snoob status.

2.6.4 SnoobSim Documentation

SnoobSim is an agent-based population simulator in R that can be used to simu-

late virtually any demographic process in small populations. It works by running

through a daily list of stochastic events within the population and updating a master

population register based on the outcome of these events, which can be influenced

by the user. Because population changes over decades, centuries, or longer can be

simulated, a full record of every event inside the simulation is not intended to be

saved. Rather, the simulator records and exports census records taken in intervals

specified by the researcher (e.g. every five years). When it is time for another census,

a copy of the population register for that day is saved, and when the simulation ends

all such censuses are saved in csv format, as real field data would be stored.

Control of the simulator is managed through the “control panel”, a list of parame-

ters at the top of the SnoobSim.r script. These are divided into basic simulator values,

such as the time between each census, initial population size, etc, vital population

rates, such as age-specific fertility and mortality, etc. and evolutionary mechanisms,

which control how the phenotypic traits of each individual are determined, and how

they influence demographic parameters.

Each day, the following demographic processes occur in this order:

1. immigration

2. births



2.6. Appendix to Chapter 2 66

3. matings

4. deaths

5. emigration

6. social learning / individual change

Since the simulation loops over days, which have relatively few births and deaths

for realistic human populations, we expect that there are no important difficulties

introduced by this order, or important differences if the order were changed.

Immigration is controlled by two functions - daily.immigration and

immigrant.maker. The first determines how many individuals will immigrate into

the population that day, following the crude immigration rate specified by the user.

If there are indeed immigrants that day, the immigrant.maker function will create

new entries in the population register for each of them.

Mating occur only if there are fecund males and females. Any female between 15

and 50 years old who is not currently pregnant can mate, as can any male between

15 and 60. The conception function determines first if any women who can mate

will actually do so that day; it determines this probabilistically by referencing an age-

specific fertility schedule specified by the user. Once it is determined that a female

will become pregnant that day, the female will then choose an available male to be the

father. This is accomplished via the mate.finder function. If no males are available

then the woman will not become pregnant, but if at least one is available she will

choose a male, each will count the other as their “mate” in the population register,

and the woman will become pregnant, beginning a daily countdown until birth saved

to the “counter” column in the population register. The length of pregnancy here is

approximately normal with mean 280 days and a standard deviation of 5 days.
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Births only occur on days at which women reach the end of their pregnancy,

as measured when the “counter” column in the population register reaches 0. For

simplicity, women only given birth to one baby each pregnancy. Each birth is added

to the population through the baby.maker function.

Deaths and emigrations occur in much the same manner. For deaths, the

grim.reaper function probabilistically determines whether each individual in the

population alive that day will die, as regulated by the age-specific mortality schedule

set by the user. Those individuals who die have their state variable in the population

register changed from “1” (alive) to “0” (dead), and they play no further role in the

demographic events of the population.

For emigrants, the daily.emigration function determines how many, if any,

individuals will leave the population that day, following the crude emigration rate set

by the user. Then, the emigrant.picker function will identify who is to leave, and

sets their state from “1” (alive) to “11” (emigrated). Individuals in the population

register with a state of “11” cannot participate in demographic events, but unlike

the dead they are able to reenter the population as immigrants. This aspect of

immigration was not implemented, though.

Provided individuals have not died or emigrated on a particular day, they then

become available for individual change in their phenotypic characteristics. One’s

Snoob status may be updated using a simple conformist heuristic. Also, one’s age

measured in days increases by 1, as do the age-determined phenotypic characteristics

of height and risk-taking score.
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Figure 2.3: Fitted model M10 plotted over the observed proportions of parents with
exactly a certain number of intercensus children, by parent age. For each of the
53 intercensus periods, Snoobs (black circles) have more children on average than
non-Snoobs (gray circles), which reflected by the fitted lines as well. Snoob men
(bright blue) have more children on average than both Snoob women (bright pink)
and non-Snoob men (dark blue), implying a sex-ratio imbalance.
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Figure 2.4: Fitted model M4 plotted over the observed proportion of intercensus
deaths per 1000 people by age. For each of the 53 intercensus periods, Snoobs (black
circles) die less frequently than non-Snoobs (gray circles), which reflected by the fitted
lines as well. Snoob women (bright pink) survive most frequently, closely followed by
Snoob men (bright blue). Non-Snoob men (dark blue) die most frequently of all, but
at rates comparable to non-Snoob women (dark pink).
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Chapter 3

Evidence of Strategic Social

Learning and Evolutionary Arms

Races in the Opening Moves of the

Game of Go

3.1 Introduction

One of the greatest contributions of evolutionary theory is the ability to answer

“why” questions about living things, explaining the existence of their intricate and

beautiful designs as adaptations via natural selection. This success extends to study

of our own species; we now know a great deal about our behavior, psychology and,

more indirectly, our ancestry, as a consequence of evolutionary theory (Laland and

Brown, 2002; Barkow et al., 1992). Many pathological or idiosyncratic human social

phenomena, for example, can be understood via the “mismatch” hypothesis, whereby
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our minds and bodies are “expecting” one particular environment (subsistence for-

aging) yet placed in another (industrial food markets and sedentary lifestyles).

This evolutionary research program has revolutionized the study of human beings,

and greatly aids our understanding of human thought and behavior. It is less clear,

though, how ancestral psychological adaptations can explain the dynamics of human

history. Such research must necessarily involve the evolution of technology and other

forms of culture, and how these inherited artifacts, institutions and ideas structure

human cognition and decision-making at particular times and places.

Work in the last three decades has approached this problem by recognizing cul-

ture is a system of inheritance, akin to genes (Richerson and Boyd, 2005; Durham,

1992). Mathematical models have shown that such a system necessarily exhibits Dar-

winian adaptive dynamics, even if the traits under study are not discrete, particulate

replicators like genes, and even if they are not created at random as in genetic mu-

tation (Boyd and Richerson, 1985; Henrich and Boyd, 2002) Thus, by applying what

Ernst Mayr called “population-thinking” to human culture, we can see how socially-

transmitted technologies, beliefs and behaviors spread and decline over time because

of the quotidian events in the lives of their human users (Shennan, 2009; Mesoudi

et al., 2006).

As with genetic evolution, these processes can be organized within a set of general

categories we call “forces”, but unlike natural selection, genetic drift, meiotic drive,

etc., the forces of cultural evolution are largely based on the nature of human psy-

chology. What humans find easy or appealing to learn, what cues and associations

they find salient, and how readily certain cultural traits encourage their own social

transmission all help drive the spread of particular technologies, beliefs and behav-

iors, and, as a result, much research in cultural evolution has concentrated on their
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study (Richerson and Boyd, 2005).

A staple of this work has been laboratory and field experiments in which partic-

ipants are given controlled access to potentially valuable social information (Cald-

well and Millen, 2008; Baum et al., 2004; Mesoudi, 2011; Efferson et al., 2007b).

These projects have shown that simple social learning heuristics, such as “when in

doubt, copy what the majority is doing” are quite plausible explanations for how

humans learn from others. However, there remains a great need for long-term, non-

experimental datasets that have sufficient detail to tell us if such learning behaviors

plausibly drive real-world cultural dynamics.

Studying cultural evolution in such historical contexts is much harder task. When

cautious, observational research struggles to identify the importance of different un-

derlying evolutionary mechanisms. Michel et al. (2011) use Google book archives

to trace word use frequencies over the last several centuries but, lacking information

about who is using those words, are unable to explain these trends beyond phe-

nomenological descriptions and qualitative associations to historical events. A clever

approach by Henrich (2001) is to compare the common sinusoidal curve of techno-

logical diffusions to the predicted shapes emerging from a variety of individual-level

learning models. Ideally, we could go further in detecting particular evolutionary

mechanisms if we knew who held a particular belief or practiced a behavior, what

social ties connected individuals together, and could track this population over many

years. This is, of course, exactly analogous to the big-data demographic work in

evolutionary demography (Grant and Grant, 2002; Ozgul et al., 2009).

In what follows, we present an analysis of one exceptionally high-resolution record

of cultural patterns: historical game records from the East Asian game of Go. Though

a modest foray into a rich historical archive, our results provide strong evidence
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that, on the average, professional Go players use the social knowledge available for

a particular game move - its prevelance and performance - to decide whether or not

to use it in their own games. This learning process, in aggregate, is thus largely

responsible for driving population trends in Go openings among professional players.

Our argument proceeds as follows: first, we describe the nature of the study

system, and establish that while the game of Go is enormously complex, professional

players follow a narrow set of norms governing opening play that allows us to keep

track of only a few common move variants. We establish some gross historic patterns

of these opening sequences, and focus in particular on the very first move in 20th

century play, and the rise of the “Fourfour” variant.

Second, using player-level data, we use the method of evolutionary decomposition

(Beheim & Baldini, in press) show that the prevalence of the Fourfour variant can

only be explained by some form of learning, as opposed to demographic replacement

or cohort effects. Having established the importance of player decision-making, we

then construct a variety of predictive models that take into account social and in-

dividual information and compare them using information-theoretic methods. From

these, we can determine that the interaction between the Fourfour’s popularity and

performance among the professional Go community is an excellent predictor of indi-

vidual use, even after accounting for a player’s personal experiences with the move.

Finally, knowing the predictive importance of social knowledge, we focus our

attention on the strategic environment of the late 1960s and 1970s. The database

shows that the rise of the Fourfour opening move set off a period of counter-innovation

in which new, more effective responses were developed. Because of the resolution of

the data, we can trace these innovations to particular players, and indeed particular

games in which they first appeared.
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3.2 Professional Go

The East Asian board game known in the West as Go is, by players, one of the most

popular games in the world, and certainly one of the oldest living games. Originating

in China between two and three thousand years ago (where it is called weiqi), it

has since diffused to Korea (there the game is called baduk) and Japan (igo or go).

Through the Japanese, it became widely known in the West in the early 20th century,

and most American and European Go terminology is derived from the Japanese ones.

The rules of the game are easily explained: there are two players, “Black” and

“White”, named after the colors of their uniform, button-shaped stones, who sit on

opposite sides of a large 19x19 coordinate grid. Starting with Black, each player takes

turns placing a single stone on an empty grid intersection of their choice, until they

agree to stop. At the end of the game, the player who controls the majority of the

board (that is, whose stones surround or occupy the most grid intersections) is the

winner. If the eventual outcome is obvious, one player may resign mid-game; other-

wise, once all possible moves have been played, the players count grid intersections

to see who is the winner.

Beyond this basic outline of the game, there are two key rules regulating play.

First, stones or groups of stones of one player that become completely surrounded in

all four cardinal directions by stones of the other are removed from the board (this is

the only time stones are moved, once placed). Second, to prevent the possibility of

the game entering an infinite loop, the ko rule restricts play so that the same board

state cannot appear twice in one game.

Though the rules above are remarkably simple, the game is fantastically complex,

and it takes years of dedicated study to become a competitive player. Much of one’s

skill in Go comes from the ability to make judgements about the long-term influence
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of particular moves and formations on the board, a task that currently bedevils

attempts at developing competent artifical opponents (Rimmel et al., 2010).

Historically, the game was supported by the Tokugawa regime in Japan, which

sponsored four competing houses. Today, public enthusiasm in print and television

broadcasts of games in East Asia funds several professional organizations, which

employ full-time players who compete in national and international matches. Entry

into the professional leagues in Japan, China and Korea is extremely difficult, and top

players usually begin serious study in adolescence. Professional players are incredibly

skilled and can easily defeat strong amateurs in even games. Currently, the best

professional players outmatch any computer program, even with a large handicap.

Go games are quite easy to record, requiring only a single picture of the board

at the end of the game, annotated with the sequence of moves played and notes for

any stones that were removed (e.g. Figure 3.1). Game records from top players and

important tournaments have appeared in Japanese newspapers since the turn of the

20th century, often with professional commentary, and are now regularly published

online as well. In addition, many books of problems and strategies are avaliable in

East Asia, usually written by active or retired professional players. Topics in the Go

literature range from analysis of specific moves or tactics to broader strategic ideas

about play. One common feature of studying the game is learning proverbs, which

impart general lessons about good and bad play in a simple heuristic fashion 1

Digital records of game records have become standardized using the SGF (“Smart

Game Format”) markup to document move sequences and metadata in plaintext

files. Though large archives of professional games, stretching back centuries, exist

1Examples from Segoe Kensaku’s Go Proverbs Illustrated (1960) include “When your opponent
has two weak groups, attack them both at once.” and “One point in the center is worth ten in the
corner.”
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Figure 3.1: A complete game record, with SGF coordinates, for a 1978 game between
Japanese professionals Takemiya Masaki and Kudo Norio. White (Kudo) won by res-
ignation after 232 moves. This match has significance in the opening move innovation
race, as described in Section 3.5.

in East Asia, only a fraction have been digitized. In recent years, tens of thousands

of amateur games are played each year on the internet, many of which are freely

available in massive online SGF repositories.

Two British Go historians, John Fairbairn and T Mark Hall, maintain a com-

mercially available SGF database of professional games (“Games of Go on Disk”,

or GoGoD) stretching back centuries. Fairbairn and Hall have conducted extensive

commentary and analyses of their database and have made their results freely avail-

able online. One anecdote from their papers is quite telling: for a particular opening
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pattern2, master 20th century player Go Seigen3 remarked in a 1996 interview that

the eighth move by White at SGF board coordinate jd was poor. Fairbairn and Hall

report that

...a database search revealed, in over 120 games, that just about every

top pro had played White 8 in this position. Indeed, the very first to do

so was... Go Seigen (in 1936). More alarmingly, White had a whopping

56% winning rate - that is unusually large...[however] when Go made this

comment...around 1996, virtually all pros suddenly stopped playing White

[at this position]. (Fairbairn and Hall, 2009)

Such descriptions are tantalizing evidence that professional Go game records con-

tain clear evidence of the social learning dynamics thought to drive much of cultural

evolution. The international professional community is small enough for information

to spread quickly from person to person, and most (nearly 90%) professional players

can be connected by one or two links in a match network in the GoGoD database.

Indeed, we assert that the essential features of professional Go - wide-open strategy

space, clear performance measures, cumulative innovation, steep learning curve, per-

vasive norms of action, large community of players, and strong financial and social

incentives for success - make it an ideal model system for studying how culture evolves

in its broadest sense.

To that end, we have developed software in the R computing language to aid in

the analysis of SGF game archives (the kaya package). In this analysis, we limit

ourselves to 34,251 professional games drawn from the GoGoD archive, spanning the

years 1956 to 2009. Because our focus here is on the behavior of players over their

2In SGF notation, B[pd]W[dp]B[pp]W[dd]B[pj]W[nc]B[pf]W[jd]; a less common variant pat-
tern switches Move 2 and Move 4.

3Japanese player names throughout this paper are written surname first, followed by given name.
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careers, we excluded players with fewer than 50 games on record for Black, leaving

207 unique players.

3.2.1 Historical Patterns of Opening Play

Throughout a game of Go, the players can place their stones at virtually any open

grid intersection. Yet almost all competitive games follow the same basic pattern:

initially, Black and White play in the four corners of the board, a few grid lines away

from the board’s edge (Figure 3.2). Play continues along the corners and sides until

after the first 50 moves, at which time the players focus on the center of the board,

for the main battles of the game. About 42% of games in the database end before

Move 200, but if they continue, the average focus of play moves towards the outer

edge of the board where the last few points of territory are claimed.

Despite having the maximum number of possibilities, the first few moves of the

game are actually the most predictable. The opening period of the game is often

characterized by highly normative, canalized play, where Black and White often fol-

low one of a set of memorized move sequences called joseki (or jungsuk in Korea),

thought to grant neither player a major advantage. As with Chess openings, strong

players maintain an encyclopedic knowledge of explored routes once a particular joseki

pattern has started.

We can quantify the importance of these early-game norms in professional play.

A useful way ecologists and physicists measure diversity is using the Shannon index

(also called Shannon entropy, or the Shannon-Weiner index), which simultaneously

incorporates both the richness and relative evenness of possible options (distinct

species, alphanumeric characters, particle positions, etc.; see Begon et al. 2006). In a

Go game database, we observe a variety of different locations played for Black’s first
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Move 1

Figure 3.2: Distribution of database play at six points in the game, showing the most
common (white) to least commom (red) board positions. At Move 1, most locations
on the board are unplayed across professional games, and only two are regularly
chosen: the Fourfour and the Threefour (whose names are based on the number of
grid lines away from the corner). By Move 20, play has extended to all over the
board but remains concentrated in the corner positions. This continues to the sides
of the board, which are the major focus of Move 50. The midgame, represented by
Move 100, concentrates focus on the center of the board, which continues through
to Move 200, at which point the entire board is in play and the game approach the
maximum entropy value of 361. Nearing endgame, play moves out towards resolving
edge positions.

move. For n different Move 1 (or M1) variants, each appearing with frequency pj,

the Shannon diversity index for M1 is

H ′ = exp

(
−

n∑
pj log(pj)

)
.

The exponentiation, while not standard, has the advantage of providing a maximum

index value of n. As a consequence, H ′ values can be interpreted as the “effective”

number of options used by players. In the database used here, the H ′ value for M1
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Figure 3.3: Shannon diversity by game move over the professional database. For each
game move to Move 300, the diversity is calculated via exp(−

∑
pj log(pj)), where

pj is the relative frequency of the jth variant at that move. The game eventually
approaches a diversity value of 349.23 effective variants at Move 199, indicating that
mid-game moves are played at each of 361 intersections on the board with roughly
equal frequency across database games.

is 2.86 effective options. The two dominant M1 variants are the Fourfour and the

Threefour (named after their numerical coordinates; see Figure 3.2, Move 1), with

the Threethree a much less common third option. Calculating the H ′ for Move 2

(White’s first move, responding to Black’s M1) gives 6.05 effective alternatives. If we

do this for each game move over all games in the GoGoD database and compare it to

the theoretical maximum of 361, it is clear that professional players limit themselves

to only a small fraction of possible options within the first 50 moves of the game

(Figure 3.3).

Despite the conservatism of opening play in professional games, novel variations

appear regularly and, if widely copied, become new joseki in the canon. Go historian

Peter Shotwell writes of the evolution of joseki : “Some are hundreds (or thousands)
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Figure 3.4: Relative appearance of different variants at Move 1 in the database since
1956. Because of board symmetry, the M1 Fourfour variant can appear in four
different places, and the M1 Threefour variant can appear in eight; the frequencies
above take all such congruencies into account. Based on the cyclic rise and fall of
the Fourfour, we can describe four major periods (labeled I-IV) over 20th century
professional play.

of years old; others are born, die, and then are reborn again as the style of play

changes; still others are yet to be born and patiently wait their turn to be discovered

in some flash of ingenuity or desperation.” (Shotwell, 2003)

As shown in Figure 3.4, we can see such dynamics at Move 1 over the latter half

of the 20th century. After a brief enthusiasm for the Threethree in the 1960s, the

Fourfour rose to dominance, peaking in 1978 (appearing in 77% of games played)

and again in 1996 (82% of games played). As a consequence of these oscillations in

the M1 alternatives, we can divide professional play since the 1950s into four major

periods (hereafter marked I-IV). The primary goal of this analysis is to understand

why this pattern exists, and what processes are driving its evolution.
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3.3 Cultural Change: Learning versus Demogra-

phy?

In general, we consider a cultural trait to undergo evolution whenever its distribution

within the population changes. In attempting to explain the oscillatory prevalence of

the Move 1 variants over the second half of the 20th century, as described by Figure

3.4, we can consider a wide variety of underlying evolutionary mechanisms. Foremost,

the enormous amount of study needed to become a professional-level player implies

that learning, especially learning from others, is an important source of evolutionary

change in Go.

Yet, even though standard cultural evolutionary models focus on such social learn-

ing, it is important to keep in mind that the distribution of cultural variants in a

population can also change due to more “demographic” processes. A change in the

age structure, differential migration across the population boundary, or a change in

the location of the boundary itself may all bring about cultural change, even though

none would be considered “learning” or necessarily involve social influence. If we can

establish that the rise of the Fourfour in Period I (1967-1977) is due to, for example,

a wave of young Fourfour users joining the professional ranks, then our focus should

be the reasons behind this influx, rather than the relatively unimportant learning

events taking place within the database.

So, before considering more sophisticated questions about social influence, we

have a much more basic and essential task: is the changing prevalence of the Four-

four driven by players altering their behavior (which we’ll refer to generically as

“learning”), or is it more due to the demographic replacement of older players as

they retire from play with newer players, who enter with a different repertoire of
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moves?

The methodology to answer this question is what we call evolutionary decompo-

sition, as developed by Coulson and Tuljapurkar (2008), and Beheim and Baldini (in

press). This approach uses individual-level information to exactly partition aggregate

change into distinct categories of process. In Go, there are really only two ways the

population can change size: player entry or exit. Thus, for time periods of arbitrary

length, the number of players active in the next period (N ′) must be related to the

number in the current period (N) by

N ′ = N + I − E,

where I is the number of players new to the second period, and E the number from

the first period absent in the second. After dividing both sides by N , we can express

this nondimensionally as

G = 1 + i− e.

where G = N ′/N , i = I/N and e = E/N . If we define player j’s “phenotype” as

φj, and assign a “1” if they use the Fourfour within their games of a particular time

period, and “0” if not, we can similarly relate the total number of Fourfour users in

successive time periods by

φ′ = φ+ φI + δ − φE

where φ =
∑
φj, φI represents the total number of Fourfour users who have joined

the population within the second time period, and φE, the total number who have

left the population within that period. The term δ represents the net balance of those

who adopted the Fourfour and those who abandoned it in that time period. Given

these two equations, we can express the change in mean frequency of Fourfour users
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within the population, φ = φ/N , as

G∆φ = i(φI − φ) + cδ − e(φE − φ).

Note that c = 1−e. Each of the three terms on the right side of the equation describe

distinct categories of evolutionary process. The first term, i(φI − φ), captures how

the mean phenotype among new players alters the mean phenotype of the popula-

tion, while e(φE − φ) measures the effect of differential outmigration. The effect of

phenotypic change among those who remain in the population, which here we call

“learning”, is captured by cδ.

Applying this decomposition equation to the game database allows us to see that

the Fourfour rose to prominence in Period I almost entirely through learning on the

part of professional players, with neglible effects from new players joining the pro

community or others leaving it (Figure 3.5). Here we used two-year periods, but the

result holds for one- or five-year periods.

This result is quite remarkable, considering the major demographic changes tak-

ing place in the population. For 1956, the database used here holds only 105 games,

among 18 Black players. For 2009, 1,354 games are recorded, among 129 unique

Black players. A large part of the explosive growth in the professional Go commu-

nity can be attributed to changes in nationality; in the 1950s and 1960s, nearly all

professionals played in Japan. In the subsequent decades, professional organizations

were established in Korea and China, and by 2009 only about a third of games played

are by Japanese players. Despite these major changes in the size and definition of

the population, the decomposition plot indicates that they had very little direct ef-

fect on the evolution of M1 variants. Individual behavioral change is the dominant

explanation, and the nature of this change should be the focus of our attention.
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Figure 3.5: Decomposition plot (left) and barplot of decomposition terms (right)
for the frequency of use of the Fourfour among players, 1956-2009, using two year
periods. Individual behavioral change (“learning”), rather than population entry and
exit, is the dominant explanation of the the rise of the Fourfour during Period I.

3.4 Are Go Players Social Learners?

With strong evidence that most of Move 1 evolution in Figure 3.4 can be attributed to

professional players altering their behavior (Figure 3.5), we now wish to build a better

sense of what motivates such changes. As strategic actors in a highly competitive

environment, Go players are under immense pressure to choose effective moves that

help defeat their opponents. Drawing upon the standard methods in economic and

evolutionary theory, we can consider Black’s choice at M1 as the result of several

plausible models of strategic decision-making (Bowles, 2006).

(i) Forward-looking strategic calculation. In this model, we imagine rational play-

ers who can accurately estimate the future outcomes of particular actions given a set

of key input variables, including information about one’s general skill compared to

that of one’s opponent. Players may choose to try unorthodox or riskier moves against

a weaker opponent, who may be less likely to capitalize on their flaws, or when they

face a higher handicap. In such a decision-making model, it is as if the players have
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complete knowledge of the consequences of using the Fourfour or Threefour variant

at Move 1, and simply require the right cues to determine which is best.

(ii) Recent personal experience. An obvious problem with forward-looking ratio-

nality is that most players cannot realistically determine the value of a move without

knowledge of its past use. Recent experience may show the arrival of a counterstrat-

egy renders a particular move ineffective, and we should expect that players update

their valuation of Move 1 variants based on their own past experiences.

Since records of professional games are widely available (with many of the games

taking place in the same locations in Japan and Korea), and the effectiveness of par-

ticular choices are difficult to assess from personal experience, we should also expect

players to draw upon the information contained in the experiences of others, which

we will call “population knowledge”. The theoretical literature has concentrated on

two simple ways this can be done (Boyd and Richerson, 1985; McElreath et al., 2008).

(iii) Success-biased social learning. A move that is associated with greater success

among other users, regardless of its popularity, may be favored by a focal player.

Similarly, decision-makers may emulate the moves of successful players. In each case,

this strategy rests on a casual association between trait use and the success cue, and

so the recent population performance of a particular move should help predict its

future use.

(iv) Frequency-dependent social learning. Assuming that players tend to abandon

ineffective moves, the prevalence of a move within the Go community itself may be

a useful signal of its future performance. In such situations, we may expect players

to simply adopt moves in proportion to their current popularity in the population

(“unbiased” frequency-dependence) or disproportionately favor dominant moves (so-

called “conformity” bias).
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In both of these cases, players are attending to the experiences of other users,

and we should be able to improve our predictions of their behavior by utilizing this

information. Using statistical modeling techniques, we can evaluate how consistent

real players are with the idealized models just described, by focusing on three research

questions:

1. Do players employ a particular move coincident with certain features of the

match? If so, what? The relative ages or recent win records of the players?

The opponent’s familiarity with the variant under consideration?

2. Do players tend to respond to their own personal histories with the move? Are

they more likely to play it given past success, or if they have seen it deployed

effectively against them in past matches? Could the importance of personal

experience with the variant change depending on the focal player’s age or recent

overall performance?

3. Do players attend to the recent experience of others in the pro community using

the move? Does this interact with the rank or age of the focal player?

3.4.1 Methods

We model the decision to use the Fourfour variant at M1 via a binomial model with a

logistic link function of the probability of use, fitted by maximum likelihood in the R

programming language.4 For each game j, we model whether Move 1 was a Fourfour

(yj = 1) or not (yj = 0) via

4In this analysis, we made much use of Ben Bolker’s bbmle and Richard McElreath’s rethinking
packages.
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yj ∼ Binomial(1, pj),

logit(pj) = a+ xb,

where x is a vector of predictors constructed from other variables in the game

database, and b, the vector of corresponding coefficients.

Three major model families were constructed and tested, each embodying one of

the above research questions. The first, “Match Information” uses predictors specific

to the match; the player’s age, win-loss record overall and against this particular

opponent, the handicap given to White. Players who behave according to this model

would be forward-looking strategists who can fully anticipate a move’s performance

and ignore even their own recent experiences, a kind of “null model” for learning.

Given that professional players will prepare for a high-profile match by investing a

great deal of time reviewing their opponent’s games, and that players may be less

likely to use a move they know their opponent has commanding mastery of, we also

consider the opponent’s experience using the Fourfour at Move 1 as a predictor.

The second model family, “Personal Knowledge”, includes both a player’s recent

use of the Fourfour for Move 1, and how often they won games with it, relative to

how often they won games without it. This model corresponds to the hypothesis that

players update their views of the move, based on how familiar it is to them and how

many games they have won using it. Finally, “Population Knowledge” models use

various predictors constructed from the recent population use of the Fourfour, and

the population win rate of the Fourfour relative to its alternatives. These are true

social learning models.

Predictor variables for each game used a retrospective two-year window from
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the date the game took place, taking the simple average of values for salient games

within that period. Each predictor representing a use frequency was centered on 0.5,

a natural point of interpretation for whether a behavior is in the majority. Predictors

for win rate, in contrast, were centered on the average win rate of alternative variants

at that game move. Games in which a predictor was undefined (e.g. a recent win

rate for a player’s first game) were set to 0 after centering, to drop them out of the

model-fitting process.

Models were fitted and compared in a two-round fashion. First, within each

model family, a variety of models with different combinations of predictor variables

were compared using AICc and BIC, with top-performing models advancing to the

second round. In the second round, combinations from different model families were

constructed and compared. The top-performing model for each of the three basic

model families, as well as the top-performing combination models, are presented in

Table 3.1.

3.4.2 Results

Unsurprisingly, a player’s recent use of the Fourfour at M1 strongly predicts their

current use: using the “divide by four” rule to interpret logistic regression coefficients,

a 10 percent difference in past use corresponds to, at most, a 6 percentage point

difference in the probability Black will deploy the Fourfour in the current game. Past

personal success with the Fourfour is also predictive, but not as much; an otherwise

average player who wins 60% of their Fourfour games will be about one percentage

point more likely to use the Fourfour than a similar player who wins 50% of recent

Fourfour games.

By itself, the population’s recent use of the Fourfour is not as predictive of Black’s
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behavior on M1. When the Fourfour appears in 60% of all recent games, the expected

probability of use by an average player is only 0.52, compared to 0.50 when the

Fourfour appears in half of recent games (Figure 3.6). However, it is a mistake to

think population use is unimportant; it has a large interaction with the Fourfour’s

relative win rate in the population. If the Fourfour is at 60% use and its performance

is 10 percentage points higher than that of its rival, the Threefour, the expected

probability of use is now 0.58, slightly larger than an equivalent situation for personal

use and performance.

This interaction between popularity and performance in recent games is in fact

the largest effect in the top model, strong evidence towards the view Go players are

social learners. But the interaction implies this social learning is strategic. Players

are insensitive to a move’s popularity when it performs about as well as its rivals, but

appear to be quite responsive to the popularity of a high-performing move (Figure

3.6).

Interestingly, age diminishes the effect of population knowledge but strengthens

that of personal knowledge. In the above scenario (60% pop. use and +10% pop. win

rate) and under the “All Three” model, an otherwise average professional in their late

teens will use the Fourfour with probability 0.59, while a similar player in his early

sixties will only use it with probability 0.56. In contrast, age strengths the predictive

importance of one’s personal past use slightly, about half a percentage point for a

difference in age of ten years.

Taken together, this could reflect the behavioral consequences of aging; older

players are less willing to change their behavior and less sensitive to trends in the

population. However, older players also tend to be self-selected by performance and

rank, so this could alternatively reflect a difference in underlying skill that is present
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Figure 3.6: Predicted probability of using the Fourfour from the top-performing
model, “All Three”, with uncertainty described by sampling from the joint posterior
5,000 times. In each panel, the model predicts a response to differences in population
use of the Fourfour at three levels of population performance: 10 percentage points
better than alternatives (blue), 10 percentage points below alternatives (orange) and
performance equivalence (aquamarine). Players are predicted to be more insensitive
to population frequency values when the Fourfour performs about the same as its
alternatives at M1.

throughout their careers.

Several predictors that were included in each of the early rounds never made

it to reported models, including the number of matches played against the current

opponent, how successful that opponent has been with the Fourfour recently, the

proportion of those matches won, the number of matches in which the Fourfour was

used against the focal player (playing as White). Notably, the population size (i.e.

number of active players) itself was predictively irrelevant, both as a main effect and

in regulating the importance of population use rate and population use win rate via

interactions.

Also noteworthy is that almost all of the “match-specific” predictors were excluded

in the best-performing model. Opponent’s use of the Fourfour, a strong positive

predictor in the “Match Only” family, drops out completely once personal knowledge

and population knowledge are included.
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Figure 3.7: The observed and predicted prevalence of the Fourfour variant over time,
with each bar spanning the 95% prediction interval around the maximum likelihood
estimate. Green is the trajectory predicted by the “Personal Knowledge” model. It
has a lower logistic error rate (27%) but does not track population trends closely. The
“Population Knowledge” population model (blue) tracks the observed trends more
accurately but has wide prediction intervals. The full model, “All Three” (red) is
more accurate than personal history alone, since it includes the recent behavior of
others, but it is more precise than population history alone.

As demonstrated in Figure 3.7, the “All Three” model provides an excellent re-

construction of the observed periodic trajectory of the Fourfour. Ignoring population

knowledge misses the major swings at the zenith and nadir of each cycle, while ig-

noring personal knowledge produces wide prediction intervals. Additionally, our top

model from the“All Three” family has an error rate of 26.5% on the observed data,

down from the baseline error rate of 43%. Similar values were recovered through

ten-fold cross-validation, in which the fitted model makes predictions on new data it

has never seen (Table 3.1).
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3.5 Arms Races and Innovation Cycles

To summarize, the above has established that (1) most of the change in the preva-

lence of the Fourfour variant at Move 1 over time is due to learning, rather than

demographic changes, and (2) individuals appear to judge a particular variant using

social knowledge, namely its overall popularity and relative success.

Despite the fact that the first move of the game hundreds of moves long does

not guarantee victory or defeat, how well a particular M1 variant does relative to

alternatives within the population is a robust predictor of use. As indicated by the

“All Three” model, the Fourfour enjoyed an anomalously large win rate in Period

I, during which it proliferated rapidly in the professional community (Figure 3.8).

Conversely, when it declines in Period II, its win rate is consistently below that of its

rival variant, the Threefour.

This connection to performance aids our ability to explain the historical record,

but we cannot yet say why this performance difference exists in the first place, and

why the Fourfour did relatively well during Period I and III, but poorly in Period

II and IV. Without the knowledge and skills of a professional player, this may be

impossible to fully answer. However, it is possible to trace the sucess of the Fourfour

of 20th century play to particular individuals and events. From this evidence, it

appears that the waxing and waining success of the Fourfour appears to stem from

an ongoing crucible of innovation and counterinnovation.

3.5.1 Period I: Initial Rise, 1967-1977

Among Go professionals, one player seems most responsible for the rise of the Fourfour

in the 1960s and 1970s: Takemiya Masaki. Beginning his professional career at the

age of 14, Takemiya arrived at the Fourfour’s nadir in 1965, and in the database
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Figure 3.8: The ebb and flow of the three major first move variants, with proportion
of games won. The Fourfour’s rise and fall closely tracks with its relative performance
(blue line) since 1967. Similarly, the Threethree’s brief efflorescence and extinction
closely match its relative win rate (black line). Because of its initial dominance, all
win rates are expressed relative to the Threefour’s (red line), and the dotted gray
line indicates the location of the 50% (break-even) point.

he began using it in 1968. Takemiya’s loose, center-oriented playing style, widely

known as “Cosmic Go”, involves the Fourfour at Move 1 almost exclusively; among

his 520 games as Black in the database, only 6 do not start with the Fourfour at

M15. Takemiya’s use of the Fourfour coincides with the beginning of Period I and its

proliferation within the broader Go community (Figure 3.10). During this time, his

personal performance as Black (61.8%) also exceeded the average win rate for Black

(59%).

5Of these, four are Threefour, one is Threethree, and one is Fourfive.
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Figure 3.9: Recent use of the Fourfour plotted against its recent win rate (r=0.45,
with fitted OLS line). Since its rapid diffusion in the 1970s, the Fourfour’s prevalence
at M1 has settled into a regular cycle between popularity/success (1978, 1996) and
unpopularity/underperformance (1984, 2006). If this pattern holds, the next peak in
popularity should be sometime around 2016.

His influence in starting this trend is apparently a known fact among professionals

themselves. In a 1994 interview with the British Go Journal, Korean master player

Seo Pong-su noted that, “Before him [Takemiya], Korean amateurs and professionals

used to avoid the 4-4 point; now this is the most popular opening.” and attributed

Takemiya’s innovative play to his greater willingness to research vague, risky moves

(Finch, 1994).

It is interesting to note that the Fourfour was used at M1 before the 1960s, and
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Figure 3.10: Percent of games using Fourfour by population (dashed black line) and
by player (colored lines) for the ten most prolific users of the Fourfour. Takemiya
Masaki, who almost always uses the Fourfour, appears as a solid black line.

Takemiya is obviously not its inventor. However, its success and rapid diffusion is

consistent with the hypothesis that Takemiya and his successors hit upon a new way

to use the Fourfour within the subsequent moves of the game, and this development

has had a major effect on strategic landscape of professional Go.

3.5.2 Period II: Counterinnovation and Decline, 1977-1984

Subsequent to Takemiya’s arrival, the success of the Fourfour appears to have prompted

an innovation race in White’s Move 2 response. Before 1970, White’s response to the

Fourfour was almost always a Threefour on an adjacent corner. If we imagine the

M1 Fourfour is played in the upper right quadrant (SGF coordinate pd), nearly 80%

of the time the M2 response in the late 1960s was coordinate dc (Figure 3.11). By

1977, at the Fourfour’s first peak, the M2 dc variant appeared only about 30% of the

time. During that time, M2 variants dp, cq and dd all became established moves in

rapid sequence. As measured by the proportion of games White won, cq and then dd

both consistently outperformed dp during the early 1980s, blunting the Fourfour’s
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Figure 3.11: Frequency and performance for four major M2 responses to the Fourfour.
Performance for each is calculated as the win rate subtracting the average win rate of
alternatives. As at M1, a variants’s frequency closely tracks its relative performance.

effectiveness and anticipating its decline in use.

As with the Fourfour variant at M1, the dd response appeared suddenly, and its

early successes can be traced to a single individual, Kudo Norio. Kudo began using

the move in 1977 and won 3 of the 4 games he tried it in (Table 3.2). The next year,

he won 4 of 6 attempts, including one against Takemiya (reproduced as Figure 3.1).

By 1981, over a dozen professionals were using this M2 variant, and over the next 30

years dd would steadily rise in the professional community to become the dominant

response to the M1 Fourfour, followed by dp (Figure 3.11). It is interesting to note

that both of these responses are, by board position, also Fourfours.
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3.6 Discussion

Though only a preliminary treatment of a very rich dataset, the above results demon-

strate how a socially-transmitted cultural pattern of behavior - the move variants at

M1 and M2 in the game of Go - undergo evolutionary change. From the above ev-

idence, it seems that the average professional player uses both personal knowledge

and social knowledge to decide which move to use in a particular game. Using evo-

lutionary decomposition, we can show that, despite major growth in the professional

community and addition of players from China and Korea, the population dynamics

of opening moves is driven by learning on the part of active players, rather than

demographic effects from influx of younger players or outflux of older players. A

player’s recent use of a move at M1 effectively predicts their future behavior, indicat-

ing players update their play based on past experiences. This association increases

with age; older players are better predicted by their play in the last two years than

younger players. Personal win rate using the variant also aids in prediction, but this

effect is not as strong as a player’s past use.

We also have evidence that players use population knowledge; a professional’s

behavior at M1 is strongly predicted by the recent population performance of par-

ticular variants. The population frequency of an M1 variant is also predictive, but

only when that variant is, on the average, winning more (or fewer) games than its

rivals. The conditional importance of the Fourfour’s popularity seems to indicate

that players use the frequency information strategically, since the theoretical advan-

tages of frequency-dependent learning strategies come from an association between

popularity and performance.

Given these results, it should be no surprise that the Fourfour’s prevalence is

strongly associated with its recent performance since the 1960s. By looking at par-
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ticular games, we can also see how the breakaway success of the Fourfour variant

at M1 was followed by a period of innovation and diversity in more effective M2 re-

sponses. Taken together, this evidence all seems to indicate an ongoing evolutionary

arms race taking place within the opening moves of professional Go.

Although we can do much to reconstruct and explore the historical record, several

important questions remain outstanding. First, we do not know the nature of the

observed success bias. We can see that relative performance of the Fourfour versus

the Threefour consistently improves our predictions of which one a particular player

will use. This seems to indicate players focus on how well a move does, but it is

equally possible, however, that successful players rather than successful variants are

what are emulated.

This is not captured by crude measures like population use frequency, and is in-

dicative of a larger problem: establishing exactly who players are learning from. The

statistical models above treat the general population as an equally-connected, ho-

mogenous pool. Real social influence in this situation undoubtedly involves a variety

of complex social relationships between unique personalities. The nature of these

influences may be better captured by network-based approaches that allow for het-

erogeneous interconnections between players. It may be possible to use information

about players’ nationalities or recent matches to develop measures of social proximity,

allowing the detection of theoretical effects like conformist learning or prestige.

Another problem is the nature of innovation in Fourfour play. Even if Takemiya’s

“Cosmic” opening style was the catalyst for the Fourfour’s rise in Period I, as the

evidence above seems to indicate, we do not know if other adopters were using it in

the same way. The observed pattern could be, for example, due to Takemiya’s early

successes in 1968-1970 encouraging other professionals to revisit the Fourfour and
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develop their own innovative applications, rather than emulate his.

Finally, even if players really are using a combination of individual and popula-

tion knowledge, we should consider the possibility that this offers no real strategic

advantage. A well-understood problem with success bias is that it aims to exploit an

association between use and performance, but can lead to the proliferation of neutral

or even deleterious practices if that association is not causal. The dynamics described

above would exist even if the first move has little impact on the subsequent game,

provided only that players think it does.

There are many more possible avenues of exploration in this very rich dataset.

Venturing beyond Move 2, we can study the diffusion of particular joseki patterns,

the importance of particular high-status individuals (like the Go Seigen interview

described above) or, indirectly, the diffusion of particular Go proverbs within profe-

sisonal play. The scope of study can also be expanded; large archives of professional

games go back at least several hundred years, and tens of thousands of amateur games

are available online, to say nothing of similar archives available for other games like

chess.

In any case, the statistical and theoretical tools employed above can be used to

expand our understanding of cultural dynamics. The above results hopefully demon-

strate the value of taking a quantitative, Darwinian point of view towards cultural

change. As in evolutionary ecology, we can use the results of high-resolution datasets

to help understand, indirectly, historical dynamics for which little data remains and

variants are harder to define. Indeed, we feel that the theroetical and empirical ev-

idence is so overwhelming that the key question is not “whether” culture evolves,

but rather which day-to-day learning and demographic processes brought about the

particular patterns of cultural diversity we see in human history.
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